Compuertas CMOS o MOS Complementarias

(Redirigido desde «CMOS»)
Compuertas CMOS o MOS Complementarias
NOR con CMOS.JPG


Compuertas CMOS o MOS Complementarias. (Complementary Metal-Oxide Semiconductor), el término complementario se refiere a la utilización de dos tipos de transistores en el circuito de salida, en una configuración similar a la tótem-pole de la familia TTL. Se usan conjuntamente MOSFET (MOS Field-Effect transistor, transistor de efecto campo MOS) de canal n (NMOS) y de canal p (PMOS ) en el mismo circuito, para obtener varias ventajas sobre las familias P-MOS y N-MOS. La tecnología CMOS es ahora la dominante debido a que es más rápida y consume aún menos potencia que las otras familias MOS. Estas ventajas son opacadas un poco por la elevada complejidad del proceso de fabricación del CI y una menor densidad de integración. De este modo, los CMOS todavía no pueden competir con MOS en aplicaciones que requieren lo último en LSI.

Características de la familia CMOS

Factor de carga

Al igual que N-MOS y P-MOS, los CMOS tienen una resistencia de entrada extremadamente grande (10*12Ω) que casi no consume corriente de la fuente de señales, cada entrada CMOS representa comúnmente una carga a tierra de 5 pF. Debido a su capacitancia de entrada se limita el número de entradas CMOS que se pueden manejar con una sola salida CMOS. Así pues, el factor de carga de CMOS depende del máximo retardo permisible en la propagación. Comúnmente este factor de carga es de 50 para bajas frecuencias (<1 MHz). Por supuesto para altas frecuencias, el factor de carga disminuye. La salida CMOS tiene que cargar y descargar la combinación en paralelo de cada capacitancia de entrada, de manera que el tiempo de conmutación de salida aumente en proporción al número de cargas conducidas, cada carga CMOS aumenta el retardo en la conducción de la propagación del circuito por 3 ns. Así podemos llegar a la conclusión de que el factor de carga de CMOS depende del máximo retardo permisible en la propagación


Velocidad de conmutación

Los CMOS, al igual que N-MOS y P-MOS, tiene que conducir capacitancias de carga relativamente grandes, su velocidad de conmutación es más rápida debido a su baja resistencia de salida en cada estado. Recordemos que una salida N-MOS tiene que cargar la capacitancia de carga a través de una resistencia relativamente grande (100 k Ω). En el circuito CMOS, la resistencia de salida en el estado ALTO es el valor RON del P-MOSFET, el cual es generalmente de 1 k Ω o menor. Esto permite una carga más rápida de la capacitancia de carga. Los valores de velocidad de conmutación dependen del voltaje de alimentación que se emplee, por ejemplo en una a compuerta NAND de la serie 4000 el tiempo de propagación es de 50 ns para VDD = 5 V y 25ns para VDD = 10 V. Como podemos ver, mientras VDD sea mayor podemos operar en frecuencias más elevadas. Por supuesto, mientras más grande sea VDD se producirá una mayor disipación de potencia. Una compuerta NAND de las series 74HC o 7411CT tiene un tpd promedio alrededor de 8 ns cuando funciona con un VDD = 5V. Esta velocidad es comparable con la de la serie 74LS.


Disipación de potencia

En la siguiente gráfica, podemos observar como la disipación de potencia en función de la frecuencia de una compuerta TTL es constante dentro del rango de operación. En cambio, en la compuerta CMOS depende de al frecuencia.

La disipación de potencia de un CI CMOS será muy baja mientras esté en una condición dc. Desafortunadamente, PD siempre crecerá en proporción a la frecuencia en la cual los circuitos cambian de estado. Cada vez que una salida CMOS pasa de BAJO a ALTO, tiene que suministrarse una corriente de carga con oscilación momentánea a la capacitancia de carga. Esta capacitancia consta de las capacitancias de entrada de las cargas combinadas que se conducen y de la capacitancia de salida propia del dispositivo. Estas breves espigas de corriente son suministradas por VDD y pueden tener una amplitud regular de 5 mA y una duración de 20 a 30 ns. Es obvio, que cuando la frecuencia de conmutación aumente, habrá más de estas espigas de corriente por segundo y el consumo de corriente promedio de VDD aumentará. De este modo, en frecuencias más altas, CMOS comienza a perder algunas de sus ventajas sobre otras familias lógicas. Como regla general, una compuerta CMOS tendrá el mismo PD en promedio que una compuerta 74LS en frecuencias alrededor de cerca dc 2 a 3 MHz. Para CI MSI, la situación es más compleja que la que se expresa aquí y un diseñador lógico debe realizar un análisis detallado para determinar si el CMOS tiene o no una ventaja en cuanto a la disipación de potencia en cierta frecuencia de operación.


Voltaje de alimentación

Los circuitos bipolares TTL requieren una alimentación de ?? volts, tolerando sólo una pequeña desviación. Los circuitos CMOS en cambio, permiten un rango de alimentación mayor, de +2 a +6 volts para las series HC y AC, y de +3 a +15 volts para las series 4000 y 74CXX. Sin embargo, existen dos series CMOS, la HCT y la ACT, que han sido diseñadas para ser compatibles con los circuitos TTL y por lo tanto requieren una alimentación de +5 volts.

Niveles de entrada

Cuando una entrada TTL está en estado L(bajo) , entrega corriente al circuito que le está generando la Señal L (típicamente 0,25 mA para la serie LS). Esto debe ser considerado cuando se alimentan compuertas TTL con otro tipo de circuitos. Contrariamente, en un circuito CMOS no existe corriente de entrada. El umbral de entrada necesario en una compuerta TTL para provocar un cambio en la salida es de alrededor de dos caídas de voltaje de un diodo (aproximadamente 0,3 volts). Sin embargo, en la mayor parte de las familias CMOS, este umbral es de alrededor de media fuente de alimentación, con una dispersión considerable, típicamente de entre 1/3 y 2/3 de la fuente de poder. Las familias HCT y ACT, compatibles con los TTL, han sido diseñadas para tener un umbral de entrada bajo, similar a los TTL. Como vimos, esto se debe a que en los circuitos TTL la salida H (alto) no llega a +5 volts. Las entradas CMOS son susceptibles a daño permanente producto de la electricidad estática durante su manipulación. Las entradas no utilizadas deben ser conectadas a H o L a según corresponda.

Diferencias entre las familias CMOS y TTL

Las diferencias más importantes entre ambas familias son: a) En la fabricación de los circuitos integrados se usan transistores bipolares par el TTL y transistores MOSFET para la tecnología CMOS b) Los CMOS requieren de mucho menos espacio (área en el CI) debido a lo compacto de los transistores MOSFET. Además debido a su alta densidad de integración, los CMOS están superando a los CI bipolares en el área de integración a gran escala, en LSI - memorias grandes, CI de calculadora, microprocesadores-, así como VLSI. c) Los circuitos integrados CMOS es de menor consumo de potencia que los TTL. d) Los CMOS son más lentos en cuanto a velocidad de operación que los TTL. e) Los CMOS tienen una mayor inmunidad al ruido que los TTL. f) Los CMOS presenta un mayor intervalo de voltaje y un factor de carga más elevado que los TTL. En resumen podemos decir que: TTL: diseñada para una alta velocidad. CMOS: diseñada para un bajo consumo. Actualmente dentro de estas dos familias se han creado otras, que intentan conseguir lo mejor de ambas: un bajo consumo y una alta velocidad. La familia lógica ECL se encuentra a caballo entre la TTL y la CMOS. Esta familia nació como un intento de conseguir la rapidez de TTL y el bajo consumo de CMOS, pero en raras ocasiones es empleada.

Ventajas de CMOS sobre las TTL

La lógica CMOS ha emprendido un crecimiento constante en el área de la MSI, principalmente a expensas de la TTL, con la que compite directamente. El proceso de fabricación de CMOS es más simple que el TTL y tiene una mayor densidad de integración, lo que permite que se tengan más circuitos en un área determinada de sustrato y reduce el costo por función. La gran ventaja de los CMOS es que utilizan solamente una fracción de la potencia que se necesita para la serie TTL de baja potencia (74L00), adaptándose de una forma ideal a aplicaciones que utilizan la potencia de una batería o con soporte en una batería. El inconveniente de la familia CMOS es que es más lenta que la familia TTL, aunque la nueva serie CMOS de alta velocidad "HCMOS" (SERIES HC y HCT), que vio la luz en 1983, puede competir con las series bipolares avanzadas en cuanto a velocidad y disponibilidad de corriente, y con un consumo menor, con las series 74 y 74LS.

Fuentes

  • T. L. Floyd. "Fundamentos de Sistemas Digitales". Capítulo 15. Editorial Prentice Hall.
  • T. Pollán. "Electrónica Digital". Colección de textos docentes. Publicaciones de la Universidad de Zaragoza.
  • Díaz Calvo, Julio. Electrónica Digital I. Editorial Pueblo y Educación. Ciudad de la Habana. 1983