Celda fotoeléctrica

Celda fotoeléctrica
Información sobre la plantilla
(220 × 219 píxeles)
Dispositivo a través del cual la energía luminosa es transformada en energía eléctrica.

Celda fotoeléctrica. Dispositivo electrónico que permite transformar la energía luminosa (fotones) en energía eléctrica (electrones) mediante el efecto fotovoltaico. Es también llamada fotocelda o celda fotovoltaica,

Composición

Están compuestas de un material que presenta efecto fotoeléctrico: absorben fotones de luz y emiten electrones. Cuando estos electrones libres son capturados, el resultado es una corriente eléctrica que puede ser utilizada como electricidad.

La eficiencia de conversión media obtenida por las células disponibles comercialmente (producidas a partir de silicio monocristalino) está alrededor del 11-12%, pero según la tecnología utilizada varía desde el 6% de las células de silicio amorfo hasta el 14-19% de las células de silicio monocristalino.

También existen Las células multicapa, normalmente de Arseniuro de galio, que alcanzan eficiencias del 30%. En laboratorio se ha superado el 42% con nuevos paneles experimentales.[cita requerida] La vida útil media a máximo rendimiento se sitúa en torno a los 25 años, período a partir del cual la potencia entregada disminuye.

Principio de funcionamiento de la fotocelda eléctrica

En un semiconductor expuesto a la luz, un fotón de energía arranca un electrón, creando al pasar un «hueco». Normalmente, el electrón encuentra rápidamente un hueco para volver a llenarlo, y la energía proporcionada por el fotón, pues, se disipa.

El principio de una célula fotovoltaica es obligar a los electrones y a los huecos a avanzar hacia el lado opuesto del material en lugar de simplemente recombinarse en él: así, se producirá una diferencia de potencial y por lo tanto tensión entre las dos partes del material, como ocurre en una pila. Para ello, se crea un campo eléctrico permanente, a través de una unión pn, entre dos capas dopadas respectivamente, p y n:

  • La capa superior de la celda se compone de silicio dopado de tipo n.

En esta capa, hay un número de electrones libres mayor que una capa de silicio puro, de ahí el nombre del dopaje n, como carga negativa (electrones). El material permanece eléctricamente neutro: es la red cristalina quien tiene globalmente una carga negativa.

  • La capa inferior de la celda se compone de silicio dopado de tipo p. Esta capa tiene por lo tanto una cantidad media de electrones libres menor que una capa de silicio puro, los electrones están ligados a la red cristalina que, en consecuencia, está cargada positivamente. La conducción eléctrica está asegurada por los huecos, positivos (p).

Usos

Las células fotovoltaicas o fotoeléctricas se utilizan a veces solas (iluminación de jardín, calculadoras, ...) o agrupadas en paneles solares fotovoltaicos. Se utilizan para reemplazar a las baterías (cuya energía es con mucho la más cara para el usuario), las células han invadido las calculadoras, relojes, aparatos, etc.

Es posible aumentar su rango de utilización almacenándola mediante un ( condensador o pilas). Cuando se utiliza con un dispositivo para almacenar energía, es necesario colocar un diodo en serie para evitar la descarga del sistema durante la noche. Se utilizan para producir electricidad para muchas aplicaciones (satélites, parquímetros, ...), y para la alimentación de los hogares o en una red pública en el caso de una central solar fotovoltaica.

Zona de Carga de Espacio

En el momento de la creación de la unión pn, los electrones libres de la capa n entran en la capa p y se recombinan con los huecos en la región p.

Existirá así durante toda la vida de la unión, una carga positiva en la región n a lo largo de la unión (porque faltan electrones) y una carga negativa en la región en p a lo largo de la unión (porque los huecos han desaparecido); el conjunto forma la “Zona de Carga de Espacio” (ZCE) y existe un campo eléctrico entre las dos, de n hacia p.

Este campo eléctrico hace de la ZCE un diodo, que solo permite el flujo de corriente en una dirección: los electrones pueden moverse de la región p a la n, pero no en la dirección opuesta y por el contrario los huecos no pasan más que de n hacia p.

En funcionamiento, cuando un fotón arranca un electrón a la matriz, creando un electrón libre y un hueco, bajo el efecto de este campo eléctrico cada uno va en dirección opuesta: los electrones se acumulan en la región n (para convertirse en polo negativo), mientras que los huecos se acumulan en la región dopada p (que se convierte en el polo positivo).


Este fenómeno es más eficaz en la (ZCE), donde casi no hay portadores de carga (electrones o huecos), ya que son anulados, o en la cercanía inmediata a la (ZCE): cuando un fotón crea un par electrón-hueco, se separaron y es improbable que encuentren a su opuesto, pero si la creación tiene lugar en un sitio más alejado de la unión, el electrón (convertido en hueco) mantiene una gran oportunidad para recombinarse antes de llegar a la zona n (resp. la zona p). Pero la ZCE es necesariamente muy delgada, así que no es útil dar un gran espesor a la célula.

En suma, una célula fotovoltaica es el equivalente de un Generador de Energía a la que hemos añadido un diodo. Es preciso añadir contactos eléctricos (que permitan pasar la luz: en la práctica, mediante un contacto de rejilla, una capa antireflectante para garantizar la correcta absorción de fotones, etc.

Para que la célula funcione, y produzca la potencia máxima de corriente se le añade la banda prohibida de los semiconductores a nivel de energía de los fotones. Es posible aumentar las uniones a fin de explotar al máximo el espectro de energía de los fotones, lo que produce las células multijuntas.

Generaciones de células fotoeléctricas

Las células fotoeléctricas se clasifican en tres generaciones que indican el orden de importancia y relevancia que han tenido históricamente. En el presente hay investigación en las tres generaciones mientras que las tecnologías de la primera generación son las que más están representadas en la producción comercial con el 89.6% de producción en 2007.

Primera Generación

Las células de la primera generación tienen gran superficie, alta calidad y se pueden unir fácilmente. Las tecnologías de la primera generación no permiten ya avances significativos en la reducción de los costes de producción. Los dispositivos formados por la unión de células de silicio se están acercando al límite de eficacia teórica que es del 31%[14] y tienen un periodo de amortización de 5-7 años.[15]

La Segunda Generación

Los materiales de la segunda generación han sido desarrollados para satisfacer las necesidades de suministro de energía y el mantenimiento de los costes de producción de las células solares.

Las técnicas de fabricación alternativas, como la deposición química de vapor, y la galvanoplastia tiene más ventajas,[16] ya que reducen la temperatura del proceso de forma significativa. Uno de los materiales con más éxito en la segunda generación han sido las películas finas de teluro de cadmio (CdTe), CIGS, de silicio amorfo y de silicio microamorfo.

Estos materiales se aplican en una película fina en un sustrato de apoyo tal como el vidrio o la cerámica, la reducción de material y por lo tanto de los costos es significativa. Estas tecnologías prometen hacer mayores las eficiencias de conversión, en particular, el CIGS-CIS, el DSC y el CdTe que son los que ofrecen los costes de producción significativamente más baratos. Estas tecnologías pueden tener eficiencias de conversión más altas combinadas con costos de producción más baratos.

Entre los fabricantes, existe una tendencia hacia las tecnologías de la segunda generación, pero la comercialización de estas tecnologías ha sido difícil. En 2007, First Solar produjo 200 MW de células fotoeléctricas de CdTe, el quinto fabricante más grande de células en 2007. Wurth Solar comercializó su tecnología de CIGS en 2007 produciendo 15 MW.

Nanosolar comercializó su tecnología de CIGS en 2007 y con una capacidad de producción de 430 MW para 2008 en los EEUU y Alemania. Honda, también comenzó a comercializar su base de paneles solares CIGS en 2008. En 2007, la producción de CdTe representó 4.7% del mercado, el silicio de película fina el 5.2%, y el CIGS 0.5%.

Tercera generación

Se denominan células solares de tercera generación a aquellas que permiten eficiencias de conversión eléctrica teóricas mucho mayores que las actuales y a un precio de producción mucho menor. La investigación actual se dirige a la eficiencia de conversión del 30-60%, manteniendo los materiales y técnicas de fabricación a un bajo costo.

Se puede sobrepasar el límite teórico de eficiencia de conversión de energía solar para un solo material, que fue calculado en 1961 por William Bradford Shockley y Queisser en el 31% No utilizan turbinas ni generador si no la luz natural del sol.

Existen diversos métodos para lograr esta alta eficiencia incluido el uso de célula fotovoltaica con multiunión, la concentración del espectro incidente, el uso de la generación térmica por luz ultravioleta para aumentar la tensión, o el uso del espectro infrarrojo para la actividad nocturna


Técnica de fabricación

El silicio es actualmente el material más comúnmente usado para la fabricación de células fotovoltaicas. Se obtiene por reducción de la sílice, compuesto más abundante en la corteza de la Tierra, en particular en la arena o el cuarzo.

El primer paso es la producción de silicio metalúrgico, puro al 98%, obtenido de pedazos de piedras de cuarzo provenientes de un filón mineral (la técnica de producción industrial no parte de la arena).El silicio se purifica mediante procedimientos químicos (Lavado + Decapado) empleando con frecuencia destilaciones de compuestos clorados de Silicio, hasta que la concentración de impurezas es inferior al 0.2 partes por millón.

Así se obtiene el Silicio grado semiconductor con un grado de pureza superior al requerido para la generación de Energía Solar Fotovoltaica. Este ha constituido la base del abastecimiento de materia prima para aplicaciones solares hasta la fecha, representando en la actualidad casi las tres cuartas partes del aprovisionamiento de las industrias.

Sin embargo, para usos específicamente solares, son suficientes (dependiendo del tipo de impureza y de la técnica de cristalización), concentraciones de impurezas del orden de una parte por millón. Al material de esta concentración se le suele denominar Silicio de grado solar.

Con el silicio fundido, se realiza un proceso de crecimiento cristalino que consiste en formar capas monomoleculares alrededor de un germen de cristalización o de un cristalito inicial. Nuevas moléculas se adhieren preferentemente en la cara donde su adhesión libera más energía. Las diferencias energéticas suelen ser pequeñas y pueden ser modificadas por la presencia de dichas impurezas o cambiando las condiciones de cristalización.

La semilla o gérmen de cristalización que provoca este fenómeno es extraída del silicio fundido, que va solidificando de forma cristalina, resultando, si el tiempo es suficiente, un monocristal y si es menor, un policristal. La temperatura a la que se realiza este proceso es superior a los 1500 °C.

El procedimiento más empleado en la actualidad es el Proceso Czochralski, pudiéndose emplear también técnicas de colado. El Silicio cristalino así obtenido tiene forma de lingotes.

Estos lingotes son luego cortados en láminas delgadas cuadradas (si es necesario) de 200 micrómetros de espesor, que se llaman «obleas». Después del tratamiento para la inyección del enriquecido con dopante (P, As, Sb o B) y obtener así los semiconductores de silicio tipo P o N.

Después del corte de las obleas, las mismas presentan irregularidades superficiales y defectos de corte, además de la posibilidad de que estén sucias de polvo o virutas del proceso de fabricación.

Esta situación puede disminuir considerablemente el rendimiento del panel fotovoltaico así que se realizan un conjunto de procesos para mejorar las condiciones superficiales de las obleas tales como un lavado preliminar, la eliminación de defectos por ultrasonidos, el decapado, el pulido o la limpieza con productos químicos.

Para las celdas con más calidad (monocristal) se realiza un tratado de texturizado para hacer que la oblea absorba con más eficiencia la radiación solar incidente.

Posteriormente, las obleas son «metalizadas», un proceso que consiste en la colocación de unas cintas de metal incrustadas en la superficie conectadas a contactos eléctricos que són las que absorben la energía elecrica que generan las uniones P/N a causa de la irradicación solar y la transmiten.

La producción de células fotovoltaicas requiere energía, y se estima que un módulo fotovoltaico debe trabajar alrededor de 2 a 3 años[4] según su tecnología para producir la energía que fue necesaria para su producción (módulo de retorno de energía).

Materiales de fabricación

Estos son objeto de programas de investigación ambiciosos para reducir el costo y el reciclado de las células fotovoltaicas. Las tecnologías de película delgada sobre sustratos sin marcar recibió la aceptación de la industria más moderna.

En 2006 y 2007, el crecimiento de la producción mundial de paneles solares se ha visto obstaculizado por la falta de células de silicio y los precios no han caído tanto como se esperaba. La industria busca reducir la cantidad de silicio utilizado.

Las células monocristalinas han pasado de 300 micras de espesor a 200 y se piensa que llegarán rápidamente a las 180 y 150 micras, reduciendo la cantidad de silicio y la energía requerida, así como también el precio.

Fuentes