Inecuaciones cuadráticas

De EcuRed
Inecuaciones cuadráticas
Información sobre la plantilla
260px
Concepto:Llamaremos inecuación cuadrática a toda inecuación en la cual uno de sus miembros es una expresión de la forma ax2+bx+c y el otro miembro es cero.

Inecuaciones cuadráticas. Inecuaciones cuadráticas o de segundo grado son desigualdades donde la variable de mayor exponente tiene grado dos (2).

Contenido

Definición

Una inecuación cuadrática o de segundo grado es una desigualdad donde la variable tiene exponente 2 y es en su forma general de una de las formas siguientes ax2 + bx + c ≥ 0, ax2 + bx + c ≤ 0, ax2 + bx + c > 0 ó ax2 + bx + c ; 0, también puede tener el signo de desigualdad (d≥ bx + c), pero se puede llevar a una de las formas anteriores haciendo transformaciones equivalentes.

Ejemplo de inecuación cuadrática

x2 + 2x < 15 y 4x2 ≥ 12x -9

Sugerencias para resolver inecuaciones cuadráticas

  1. Escribe la inecuación en su forma general, es decir comparada con cero.
  2. Halla los ceros de la ecuación cuadrática ax2 + bx + c = 0  (Por Descomposición en factores o por la fórmula del discriminante). Si el Discriminante es menor que cero la solución es todos los reales o no tiene solución, dependiendo de la desigualdad y del signo de ¨a¨.
  3. Representa esos ceros en una Recta numérica.
  4. Analiza el signo de ese Trinomio en los Intervalos determinados por los ceros,  evaluando el Polinomio en valores cómodos de esos intervalos o ubicando los signos de derecha a izquierda (Si a>0 comienza con el signo más y alternando menos y luego más, si a < 0 comienza con menos y de igual forma alterna, el siguiente gráfico hace referencia en caso de ¨ a ¨ positivo).
  5. Escribe la solución en notación de intervalo, teniendo en cuenta que si la desigualdad es estricta los ceros no se incluyen y en caso contrario se incluyen en la solución.

Nota importante: Después de comparar con cero se obtiene una Función cuadrática y por eso es que se buscan sus ceros y se hace el análisis de los signos de dicha función en esos Intervalos, ya que la función cuadrática representa una Parábola que puede abrir hacia arriba o hacia abajo según el signo de a. Gráfico de una parábola

Ejemplo resuelto

Halla la solución de la siguiente inecuación cuadrática.

1) x2 – 2x > 3

Respuesta.

1. x2 – 2x – 3 > 0

x2 – 2x – 3 = 0

(x – 3) (x+1) = 0 x = -1 ó x = 3

Rta. x Real: x > 3 ó x < -1 También se puede dar la respuesta en forma de intervalo

S = ]-∞, -1[ U ] 3,+∞[

Ejercicios propuestos

Halla la solución de las siguientes inecuaciones cuadráticas y representarla en la recta numérica.

Fuentes

Información consultada en las páginas web:

Enlaces externos