Plasma

De EcuRed
Plasma
Información sobre la plantilla

Plasma. Conjunto de partículas con portadores libres de carga eléctrica, el cual desarrolla comportamiento colectivo.

Contenido

Concepto

El plasma es un conjunto cuasineutral de partículas con portadores libres de carga eléctrica, el cual desarrolla comportamiento colectivo. En este se encuentran portadores de carga eléctrica libres. Los átomos están al menos parcialmente ionizados. El grado de ionización no tiene que ser muy grande, si el tamaño de la formación de plasma es lo suficientemente extensa. Precisamente un plasma se diferencia de un gas por el que haya portadores libres de carga en el primero. El plasma es conductivo y reacciona fuertemente a los campos eléctricos y magnéticos.

Características

  • Un plasma se diferencia de un gas por el que haya portadores libres de carga en el primero. El plasma es conductivo y reacciona fuertemente a los campos eléctricos y magnéticos.
  • La segunda cualidad es la cuasineutralidad. Supongamos que visto microscópicamente un cierto volumen tiene en promedio siempre la misma cantidad de partículas positivas y negativas. Desde afuera el plasma se comporta como si fuera un fluido sin carga (líquido o gas). La exigencia de cuasineutralidad toma en parte de la definición de plasma lo de ser un conjunto de partículas cargadas, las cuales difieren solamente un poco cualitativamente en ésta característica (o sea, un plasma es "casi" neutral, pero no lo es completamente).
  • La última parte de la definición de plasma es su comportamiento colectivo. Con esto se entiende que el plasma es capaz en su conjunto de procesos de generar campos magnéticos y eléctricos, campos a los cuales a su vez puede reaccionar.

La definición de plasma no incluye los conjuntos de partículas cargadas donde la cantidad de partículas positiva y negativamente cargadas no sea aproximadamente la misma, ya que no llenan el requerimiento de cuasineutralidad. Tampoco se incluyen los gases muy débilmente ionizados, como son las llamas de las velas (no llenan el requerimiento de comportamiento colectivo). El concepto de plasma fue usado por primera vez por Irwing Langmuir (18811957). Al plasma se le llama a veces "el cuarto estado de la materia", además de los tres conocidos, sólido, líquido y gas. Es un gas en el que los átomos se han roto, que está formado por electrones negativos y por iones positivos, átomos que han perdido electrones y han quedado con una carga eléctrica positiva y que están moviéndose libremente. Presenta características propias que no se dan en los sólidos, líquidos o gases, por lo que es considerado otro estado de agregación de la materia. Como el gas, el plasma no tiene una forma definida o un volumen definido, a no ser que esté encerrado en un contenedor; pero a diferencia del gas en el que no existen efectos colectivos importantes, el plasma bajo la influencia de un campo magnético puede formar estructuras como filamentos, rayos y capas dobles En física y química, se denomina plasma al cuarto estado de agregación de la materia, un estado fluido similar al estado gaseoso pero en el que determinada proporción de sus partículas están cargadas eléctricamente y no poseen equilibrio electromagnético, por lo que es un buen conductor eléctrico y sus partículas responden fuertemente a las interacciones electromagnéticas de largo alcance.

El plasma es el estado de agregación más abundante de la naturaleza, y la mayor parte de la materia en el Universo visible se encuentra en estado de plasma, la mayoría del cual es el enrarecido plasma intergaláctico (particularmente el medio del intracluster) y en las estrellas.

Grupos del estado plasmático

  1. Plasma común: las capas de electrones de los átomos son parcialmente deterioradas (debido a una alta temperatura o presión). Los electrones libres son responsables de las características plasmáticas de la sustancia en cuestión.
  2. Plasma termonuclear: Las capas electrónicas de los átomos no existen, la sustancia es una mezcla de núcleos “pelados” y electrones libres. En éste estado se encuentran el plasma en los núcleos de las estrellas, donde se da lugar la síntesis TN.
  3. Plasma de nucleones: Debido a muy altas temperaturas o presiones, los mismos núcleos atómicos son despedazados. La materia es una mezcla de electrones, protones y neutrones. Los plasmas nucleónicos se manifestaron a los 10−5 s después del comienzo del Universo, donde los quarks crearon los primeros protones y neutrones. Encontramos también este tipo de plasma en las capas exteriores de una supernova explotando, donde su comienzo desarrolla una onda de choque de gas presionado. En ésta capa por un corto tiempo se dan lugar disturbios en las reacciones termonucleares, que dan lugar a elementos pesados.
  4. Plasma de Quarks-gluones: en altas energías los nucleones mismos se desmenuzan en sus constituyentes: los quarks y los gluones. En ese estado se encontraba la materia quizá hasta el primer décimo de microsegundo después del comienzo del Universo y artificialmente se logró reproducir este estado de la materia en el CERN en el año 2000.

Por plasma, también entienden algunas como partes de la ionósfera, especialmente la capa F, la cual refleja las ondas de radio y permite la comunicación por radio a través de la reflexión en la ionósfera. El plasma se encuentra en los cinturones radiantes de van Allen. El viento solar, una corriente ininterrumpida de partículas desde nuestro Sol, dentro de la cual también se encuentra nuestra Tierra, es también un plasma. En estado plasmático se encuentran los núcleos y atmósferas de las estrellas, el núcleo de nuestra galaxia, las nebulosas y la mayoría de los objetos en el Universo. En la Tierra nos encontramos con el plasma en los canales de los rayos, en diferentes descargas eléctricas y el plasma es también creado artificialmente e investigado en los laboratorios.

Fenómenos básicos en el plasma

El plasma tiene tendencia a crear formaciones lineales y de superficie —la fibra plasmática o estrujamiento (pinch) y las superficies de corriente o paredes estrujadas (pinched)—. Proyecta fenómenos llamados colectivamente como deriva —movimiento de las partículas perpendiculares a un campo magnético u otros campos de fuerzas—. A través de un plasma se pueden expandir una cantidad enorme de ondas de diferentes tipos —desde las ondas magnetoacústicas, a las cuales pertenece por ejemplo la conocida onda de Alfvén—, las cuales son la analogía de las ondas acústicas en los gases excepto que las ondas electromagnéticas les permiten exhibir muchos modos distintos. Estas ondas son en el plasma también muy fácilmente generadas.

Parámetros de un plasma

Puesto que existen plasmas en contextos muy diferentes y con características diversas, la primera tarea de la física del plasma es definir apropiadamente los parámetros que deciden el comportamiento de un plasma.

Neutralidad y especies presentes

El plasma está formado por igual número de cargas positivas y negativas, lo que anula la carga total del sistema. En tal caso se habla de un plasma neutro o casi-neutro. También existen plasmas no neutros o inestables, como el flujo de electrones dentro de un acelerador de partículas, pero requieren algún tipo de confinamiento externo para vencer las fuerzas de repulsión electrostática. Los plasmas más comunes son los formados por electrones e iones. En general puede haber varias especies de iones dentro del plasma, como moléculas ionizadas positivas (cationes) y otras que han capturado un electrón y aportan una carga negativa (aniones).

Longitudes

La longitud de Debye o de apantallamiento electromagnético. También la longitud de una onda plasmática depende del contenido cóncavo de su recipiente, el cual influye porque su paralelismo con respecto del eje x sobre la tierra afecta la longitud de dicha onda de espectro electromagnético.

La frecuencia de plasma

Así como la longitud de Debye proporciona una medida de las longitudes típicas en un plasma, la frecuencia de plasma () describe sus tiempos característicos. Supóngase que en un plasma en equilibrio y sin densidades de carga se introduce un pequeño desplazamiento de todos los electrones en una dirección. Estos sentirán la atracción de los iones en la dirección opuesta, se moverán hacia ella y comenzarán a oscilar en torno a la posición original de equilibrio. La frecuencia de tal oscilación es lo que se denomina frecuencia de plasma. La frecuencia de plasma de los electrones es donde es la masa del electrón y su carga.

Temperatura: velocidad térmica

Los rayos y relámpagos son un plasma que alcanza una temperatura de 27.000 °C. Por lo general las partículas de una determinada especie localizadas en un punto dado no tienen igual velocidad: presentan por el contrario una distribución que en el equilibrio térmico es descrita por la distribución de Maxwell-Boltzmann. A mayor temperatura, mayor será la dispersión de velocidades (más ancha será la curva que la representa).

Modelos

Modelos teóricos

Tras conocer los valores de los parámetros descritos en la sección anterior, el estudioso de los plasmas deberá escoger el modelo más apropiado para el fenómeno que le ocupe. Las diferencias entre diferentes modelos residen en el detalle con el que describen un sistema, de modo que se puede establecer así jerarquía en la que descripciones de nivel superior se deducen de las inferiores tras asumir que algunas de las variables se comportan de forma prescrita. Estas asunciones o aproximaciones razonables no son estrictamente ciertas pero permiten entender fenómenos que serían difíciles de tratar en modelos más detallados. Por supuesto, no todas las especies han de ser descritas de una misma forma: por ejemplo, debido a que los iones son mucho más pesados que los electrones, es frecuente analizar la dinámica de los últimos tomando a los iones como inmóviles o estudiar los movimientos de los iones suponiendo que los electrones reaccionan mucho más rápido y por tanto están siempre en equilibrio termodinámico.

Puesto que las fuerzas electromagnéticas de largo alcance son dominantes, todo modelo de plasma estará acoplado a las ecuaciones de Maxwell, que determinan los campos electromagnéticos a partir de las cargas y corrientes en el sistema. Los modelos fundamentales más usados en la física del plasma, listados en orden decreciente de detalle, es decir de microscópicos a macroscópicos, son los modelos discretos, los modelos cinéticos continuos y los modelos de fluidos o hidrodinámicos.

Modelos discretos

El máximo detalle en el modelado de un plasma consiste en describir la dinámica de cada una de sus partículas según la segunda ley de Newton. Para hacer esto con total exactitud en un sistema de partículas habría que calcular del orden de interacciones. En la gran mayoría de los casos, esto excede la capacidad de cálculo de los mejores ordenadores actuales. Sin embargo, gracias al carácter colectivo de los plasmas, reflejado en la condición de plasma, es posible una simplificación que hace mucho más manejable el cálculo. Esta simplificación es la que adoptan los llamados modelos numéricos Particle-In-Cell (PIC; Partícula-En-Celda): el espacio del sistema se divide en un número no muy grande de pequeñas celdas. En cada instante de la evolución se cuenta el número de partículas y la velocidad media en cada celda, con lo que se obtienen densidades de carga y de corriente que, insertadas en las ecuaciones de Maxwell permiten calcular los campos electromagnéticos. Tras ello, se calcula la fuerza ejercida por estos campos sobre cada partícula y se actualiza su posición, repitiendo este proceso tantas veces como sea oportuno. Los modelos PIC gozan de gran popularidad en el estudio de plasmas a altas temperaturas, en los que la velocidad térmica es comparable al resto de velocidades características del sistema.

Modelos cinéticos continuos

Cuando la densidad de partículas del plasma es suficientemente grande es conveniente reducir la distribución de las mismas a una función de distribución promediada. Esta representa la densidad de partículas contenida en una región infinitesimal del espacio de fases, es decir el espacio cuyas coordenadas son posiciones y cantidades de movimiento. La ecuación que gobierna la evolución temporal de las funciones de distribución es la ecuación de Boltzmann. En el caso particular en el que las colisiones son despreciables la ecuación de Boltzmann se reduce a la ecuación de Vlasov, demostrada por Anatoly Vlasov. Los modelos físicos cinéticos suelen emplearse cuando la densidad numérica de partículas es tan grande que un modelado discreto resulta inabordable. Por otra parte, los modelos cinéticos constituyen la base de los estudios analíticos sobre plasmas calientes.

Modelos de fluidos o hidrodinámicos

Para plasmas a bajas temperaturas, en los que estudiamos procesos cuyas velocidades características son mucho mayores que la velocidad térmica del plasma, podemos simplificar el modelo y asumir que todas las partículas de una especie en un punto dado tienen igual velocidad o que están suficientemente cerca del equilibrio como para suponer que sus velocidades siguen la distribución de Maxwell-Boltzmann con una velocidad media dependiente de la posición. Entonces se pueden derivar unas ecuaciones de fluidos para cada especie que, en su forma más general, son llamadas ecuaciones de Navier-Stokes. Lamentablemente en muchos casos estas ecuaciones son excesivamente complejas e inmanejables; hay que recurrir entonces a simplificaciones adicionales.

Fuentes