Saltar a: navegación, buscar

Semiconductor

Semiconductor
Información sobre la plantilla
Semiconductor intrinseco.png
Concepto:Sustancias aislantes que se transforman en conductores por la adición de determinadas impurezas y son utilizadas en la fabricación de transistores, chips y derivados. Ejemplo de ellos son el germanio y el silicio.

Semiconductor sustancia que se comporta como conductor o como aislante dependiendo de diversos factores, como por ejemplo el campo eléctrico o magnético, la presión, la radiación que le incide, o la temperatura del ambiente en el que se encuentre.

Elementos semiconductores

Los elementos químicos semiconductores de la tabla periódica se indican en la tabla adjunta.

Elemento Grupo Electrones en
la última capa
Cd II B 2 e-
Al, Ga, B, In III A 3 e-
Si, C, Ge IV A 4 e-
P, As, Sb V A 5 e-
Se, Te, (S) VI A 6 e-

El elemento semiconductor más usado es el Silicio, el segundo el Germanio, aunque idéntico comportamiento presentan las combinaciones de elementos de los grupos II y III con los de los grupos VI y V respectivamente (AsGa, PIn, AsGaAl, TeCd, SeCd y SCd). Posteriormente se ha comenzado a emplear también el Azufre. La característica común a todos ellos es que son tetravalentes, teniendo el silicio una configuración electrónica s²p².

Tipos de semiconductores

Semiconductores intrínsecos

Es un cristal de silicio que forma una estructura tetraédrica similar a la del Carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente, algunos electrones pueden, absorbiendo la energía necesaria, saltar a la Banda de conducción, dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente son de 1,12 y 0,67 eV para el silicio y el germanio respectivamente.

Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno, se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece invariable. Siendo "n" la concentración de electrones (cargas negativas) y "p" la concentración de huecos (cargas positivas), se cumple que:

ni es igual a n es igual a p

siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura. Si se somete el cristal a una diferencia de tensión, se producen dos corrientes eléctricas. Por un lado la debida al movimiento de los electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos con 4 capas ideales y es en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de conducción.

Semiconductores extrínsecos

Si a un semiconductor intrínseco, como el anterior, se le añade un pequeño porcentaje de impurezas, es decir, elementos trivalentes o pentavalentes, el semiconductor se denomina extrínseco, y se dice que está dopado. Evidentemente, las impurezas deberán formar parte de la estructura cristalina sustituyendo al correspondiente átomo de silicio.

Semiconductor tipo N

Un Semiconductor tipo N se obtiene llevando a cabo un proceso de dopado añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso negativas o electrones).

Cuando el material dopante es añadido, éste aporta sus electrones más débilmente vinculados a los átomos del semiconductor. Este tipo de agente dopante es también conocido como material donante ya que da algunos de sus electrones.

El propósito del dopaje tipo n es el de producir abundancia de electrones portadores en el material. Para ayudar a entender cómo se produce el dopaje tipo n considérese el caso del silicio (Si). Los átomos del silicio tienen una Valencia atómica de cuatro, por lo que se forma un Enlace covalente con cada uno de los átomos de silicio adyacentes. Si un átomo con cinco electrones de valencia, tales como los del grupo VA de la tabla periódica (ej. Fósforo (P), Arsénico (As) o Antimonio (Sb)), se incorpora a la red cristalina en el lugar de un átomo de silicio, entonces ese átomo tendrá cuatro enlaces covalentes y un electrón no enlazado. Este electrón extra da como resultado la formación de "electrones libres", el número de electrones en el material supera ampliamente el número de huecos, en ese caso los electrones son los portadores mayoritarios y los huecos son los portadores minoritarios. A causa de que los átomos con cinco electrones de valencia tienen un electrón extra que "dar", son llamados átomos donadores. Nótese que cada electrón libre en el semiconductor nunca está lejos de un ion dopante positivo inmóvil, y el material dopado tipo N generalmente tiene una Carga eléctrica neta final de cero.

Semiconductor tipo P

Un Semiconductor tipo P se obtiene llevando a cabo un proceso de dopado, añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso positivos o huecos).

Cuando el material dopante es añadido, éste libera los electrones más débilmente vinculados de los átomos del semiconductor. Este agente dopante es también conocido como material aceptor y los átomos del semiconductor que han perdido un electrón son conocidos como huecos.

El propósito del dopaje tipo P es el de crear abundancia de huecos. En el caso del silicio, un átomo tetravalente (típicamente del grupo IV A de la tabla periódica) se le une un átomo con tres electrones de valencia, tales como los del grupo IIIA de la tabla periódica (ej. Al, Ga, B, In), y se incorpora a la red cristalina en el lugar de un átomo de silicio, entonces ese átomo tendrá tres enlaces covalentes y un hueco producido que se encontrara en condición de aceptar un electrón libre.

Así los dopantes crean los "huecos". No obstante, cuando cada hueco se ha desplazado por la red, un protón del átomo situado en la posición del hueco se ve "expuesto" y en breve se ve equilibrado por un electrón. Por esta razón un hueco se comporta como una cierta carga positiva. Cuando un número suficiente de aceptores son añadidos, los huecos superan ampliamente la excitación térmica de los electrones. Así, los huecos son los portadores mayoritarios, mientras que los electrones son los [[portadores minoritarios en los materiales tipo P. Los diamantes azules (tipo IIb), que contienen impurezas de Boro (B), son un ejemplo de un semiconductor tipo P que se produce de manera natural.

Véase También

Fuentes