Transpiración en las plantas

De EcuRed
Transpiración en las plantas
Información sobre la plantilla
Concepto:Es la pérdida de agua desde los órganos aéreos en forma de vapor, es una consecuencia natural de las características anatómicas fundamentales de las plantas.
Transpiración en las plantas. Es la pérdida de agua desde los órganos aéreos en forma de vapor, es una consecuencia natural de las características anatómicas fundamentales de las plantas. Las células del parénquima o mesófilo acuoso tienen una superficie húmeda en contacto con los espacios intercelulares y estos a su vez se comunican con el medio exterior a través de los estomas, de manera que el agua de las células del mesófilo que se evapora pasa al aire a través de los espacios intercelulares, y por otra parte el agua perdida por el parénquima foliar es remplazada por la que llega procedentes de las raíces a través de los vasos conductores del xilema.

Contenido

Métodos para medir la transpiración

ESTOMAS.JPG

La determinación cuantitativa de la transpiración se ha realizado a través del tiempo por distintos métodos, cada uno de los cuales han tenido algún inconveniente o al menos ha estado limitado en condiciones específicas. Entre los métodos utilizados para medir la transpiración se encuentran:

Este método sirve para comparar las distintas velocidades de transpiración, y puede ser utilizada en plantas sembradas directamente en el suelo de cultivo sin tenerlas en condiciones de laboratorio.

Antes de iniciar la medición de la transpiración, se llena de agua el aparato para evitar que queden burbujas de aire en su interior, lo que se logra al abrir la válvula de paso del depósito superior de agua. Después se introduce un burbuja de aire en el tubo capilar, la cual a medida que la transpiraciones va realizando se desplaza por el tubo capilar en dirección al recipiente con la rama, por efecto de la succión que crea la ramita al perder agua hacia la atmósfera.

El incremento de peso que experimenta el cloruro de calcio se debe a la cantidad de agua absorbida del aire que pasó a través de la campana con la planta, cuya humedad proviene en pare del proceso transpiratorio de la planta y en la parte de la humedad natural del aire.
Para conocer qué cantidad de agua fue liberada por la transpiración, es necesario hacer circular igual volumen a través de la campana, pero si la planta, y colectar la humedad de la misma forma con una cantidad igual de cloruro de calcio. La cantidad de agua transpirada por la planta estará dada por la diferencia de peso entre el cloruro.

Factores que influyen en el proceso de transpiración

El flujo de agua en la planta depende de la anatomía interna de la planta y de las propiedades del agua. A medida que se hace más intenso el proceso de transpiración de la planta (el flujo de agua por el xilema es mayor) disminuye la presión del xilema, entonces se va haciendo mayor la diferencia entre la presión atmosférica y la presión del xilema lo que favorece el proceso de transpiración.

El movimiento del agua en la planta lo explica la teoría de la (diferencia de presión) tensión-cohesión, que se basa en las propiedades del agua como el ángulo de enlace formado por los 2 enlaces covalentes y su longitud de enlace, la diferencia de electronegatividad entre el oxígeno y el hidrógeno, la formación de puentes de hidrógeno y la polaridad de la molécula de agua, lo que genera las fuerzas de cohesión, adhesión y la presión de vapor del agua.
El factor que más influye en el proceso de transpiración de las plantas es la abertura de los estomas. Además, la energía solar; al incrementar la temperatura acelera la velocidad de transpiración (se duplica por cada incremento de 10 ºC). La humedad, la pérdida de agua es mucho más lenta cuando el aire circundante está saturado de vapor agua. El viento, el gradiente de concentración de vapor de agua entre el interior de la hoja y el aire circundante aumenta cuando las corrientes de aire arrastran el vapor de agua de la superficie foliar.

Factores meteorológicos

Luz, la temperatura, la humedad del aire y el viento.

Las variaciones de los contenidos de humedad del suelo sobre la transpiración. A medida que decrece la humedad del suelo y se aproxima al punto de marchitez permanente (1,5 MPa), la tasa de transpiración disminuye, aunque la disponibilidad de agua en la interfase suelo-raíz, pueda influir directamente en la transpiración, es más probable que la disminución del potencial hídrico del suelo cause una disminución del potencial hídrico de la hoja y se produzca un aumento en la resistencia estomática (disminuye la conductividad), debido a la pérdida de turgencia de las células guardianes y a un cierre de los estomas, por tanto, la tasa de transpiración disminuye por un aumento de la resistencia estomática, a medida que el suelo se seca, el potencial hídrico de la raíz disminuye, compensando en parte la disminución del potencial hídrico del suelo.

De los factores ambientales el que más influye en la transpiración es la radiación solar incidente, ya que tiene un efecto directo sobre la apertura estomática, muchos estomas se abren en presencia de la luz, lo que incrementa la transpiración de la planta, Si se analiza el curso diario de la transpiración desde que sale el Sol hasta que se pone, se observa que hay una correlación entre la radiación y la temperatura (otro de los factores más influyentes en la transpiración), que presenta un aumento casi paralelo. Sin embargo, la humedad relativa disminuye desde las horas de la mañana hacia el mediodía, aumentando luego en horas de la tarde, cuando declina la radiación solar y disminuye la temperatura.

La transpiración aumenta de forma paralela a la radiación solar y a la temperatura, pero con cierto retraso. Sin embargo, después del mediodía presenta sus valores máximos, disminuyendo a medida que aumenta la humedad relativa del aire, en las horas de la tarde.

La transpiración es una función directa de la presión de vapor del agua en la superficie de las células del mesófilo.

La temperatura del agua es el factor que controla la presión de vapor del agua. A medida que aumenta la temperatura, aumenta la presión de vapor de una forma exponencial. La humedad relativa del aire es un factor importante de la transpiración, en relación a la temperatura del aire.

Aumenta a medida que disminuye la humedad relativa del aire a una temperatura dada, ya que la fuerza impulsora de la transpiración es la diferencia de presiones de vapor (ΔP) entre el agua de la hoja (P) y el agua en el aire (Po).

El viento puede aumentar la transpiración, reduciendo la capa de vapor de agua estacionario que se encuentra sobre la hoja, facilitando la difusión. Así mismo, el viento tiene un efecto refrigerante en la superficie foliar, si la hoja está más caliente que la masa de aire que pasa sobre ella, la hoja se enfría, en general el viento causa un aumento en la transpiración. Si la masa de aire que se mueve sobre la hoja está cargado de humedad, la transpiración disminuye, pero si es aire seco, aumenta.

Desde el punto de vista biológico, en la transpiración influye la especie vegetal, la edad, el desarrollo y el tipo de follaje de la planta, así como la profundidad radicular.

El número de estomas por unidad de superficie foliar, es una característica de la especie, pero influyen también las condiciones ambientales y varía entre 7500 y 120000 por cm2 y se reparten entre la superficie inferior y la superior de la hoja en la proporción 3/1 (Linsley, 1949).

Otro efecto de la transpiración es la acción refrigerante de la hoja. La evaporación de agua de la superficie foliar, va acompañada de una pérdida de calor.


El calor de evaporación del agua es aproximadamente de 600 cal/gr. Esta pérdida de calor ayuda a mantener una temperatura adecuada de la hoja, durante días muy soleados. La reducción de temperatura foliar por transpiración está en el orden de 2-3ºC por debajo de la temperatura del aire. Podemos concluir que la transpiración ejerce un efecto de enfriamiento de la superficie foliar.

Variaciones de la transpiración

Las variaciones diurnas de la transpiración están estrechamente ligadas a las de temperatura, humedad y fundamentalmente intensidad de iluminación.

La transpiración cesa prácticamente al ponerse el sol, debido al cierre de los estomas. Las variaciones estacionales, dependen de la actividad vegetativa y de la posibilidad de que la atmósfera reciba vapor de agua. Fuera del periodo vegetativo la transpiración es prácticamente nula.

Finalmente, las variaciones interanuales, con muy parecidas a las de evaporación de una superficie de agua libre en las mismas condiciones ambientales. Algunos autores, dan valores de transpiración diaria, mensual y anual, pero siempre con la incertidumbre asociada a la dificultad de separar la evaporación de la transpiración.

Importancia de la transpiración

La transpiración es necesaria, ya que los estomas se abren ante el estímulo de la luz, para absorber el CO2 requerido en la fotosíntesis, aunque por contra, pueda alterar el balance hídrico al perderse el agua de la planta.

El flujo de agua a través de la planta inducido por la transpiración, proporciona un buen sistema de transporte para los minerales que son absorbidos por las raíces y que se mueven en la corriente transpiratoria. Así mismo, la absorción de agua del suelo, tiene un efecto en la movilización de sales minerales del suelo hacia la raíz, facilitando su absorción, sin un gasto de energía adicional, que implicaría la formación de masas de raíces que exploren amplias superficies de suelo.

Se ha sugerido que la transpiración es necesaria para el crecimiento normal de las plantas, ya que ayuda a mantener un estado de turgor óptimo.

Cuando las plantas crecen en una atmósfera saturada de humedad, presentan un aspecto suave y carnoso, que puede ser el resultado de una gran absorción de agua, que causa un mayor alargamiento celular. Las plantas terrestres, casi nunca están en un estado de turgor óptimo, aunque la savia celular pueda tener una presión osmótica alta, como en algunas halófitas de 200 atm., la pérdida de agua por transpiración mantiene la presión de turgor por debajo de la presión osmótica.

Balance hídrico de la planta

Los procesos básicos que determinan el balance hídrico de una planta son: la absorción, la conducción y la pérdida de agua. Si se quiere equiparar la acumulación y la pérdida de agua se debe medir la absorción y la evaporación en un intervalo de tiempo determinado.

El balance hídrico viene determinado por la diferencia entre la absorción y la transpiración, o por cualquier desviación de la condición de equilibrio, el balance hídrico oscila de valores positivos a negativos.

Existen fluctuaciones a corto plazo inducidas por las variaciones en la apertura estomática, en tiempos cortos de pocas horas, pero también pueden tener lugar variaciones a lo largo del día que se alejan más del equilibrio, especialmente durante la fase diurna y nocturna. Si se somete una planta a un período de sequía de una semana, se observa que las hojas acusan una mayor disminución en el potencial hídrico que las raíces y el suelo, ya que las hojas se encuentran sometidas a un mayor estrés transpiratorio, sin embargo, en la noche tiene lugar cierta recuperación.

El potencial hídrico durante las siguientes fases de oscuridad se hace cada vez menor. Cuando se mide la circunferencia de un árbol durante el día, se observa que disminuye, ya que el agua que se pierde por transpiración no es reemplazada con eficiencia por los tejidos de la planta, ni mediante absorción por las raíces.

El balance hídrico de las plantas varía con la especie, con los factores ambientales, las estaciones climáticas, el tipo de suelo, la edad de la planta, la hora del día, etc. En suelos arenosos el agua queda retenida en el suelo con una tensión inferior a 0,1 MPa, en cambio en suelos arcillosos, más del 50% del agua disponible, queda retenida con una tensión mahor de 0,1 MPa.

En esos suelos, el agua es menos aprovechable antes que el contenido se aproxime al punto de marchitez permanente (1,5 MPA).

Fuentes

Barthlott W. & C. Neinhuis. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202: 1-8

Cleary A.L., Brown R.C. & Lemmon B.E. 1993. Organisation of microtubules and actin filaments in the cortex of differentiating Selaginella guard cells. Protoplasma 177: 37-44

Cutter, E.G. 1986. Anatomia Vegetal. Parte I. Células e Tecidos. 2a. ed. Liv.Roca. Brasil.

Dal Molin, Paola & A.M. Gonzalez. 2005. Anatomía foliar de algunas especies arbóreas del Parque Chaqueño. Rojasiana Vol. 7 (1): 142-152.

Esau, K. 1982. Anatomía de las plantas con semilla, 2a. ed. Hemisferio Sur.