Válvula termoiónica

Valvula de vacío
Información sobre la plantilla
Valvula de vacío.jpg
La Valvula de vacío: Es un componente electrónico el cual aportó grandes avances para la electrónica en sus inicios, y aunque apareció posteriormente el transistor, en la actualidad se utilizan para aplicaciones específicas.


Válvula termoiónica

La válvula electrónica, también llamada válvula termoiónica, válvula de vacío, tubo de vacío o bulbo, es un componente electrónico utilizado para amplificar, conmutar, o modificar una señal eléctrica mediante el control del movimiento de los electrones en un espacio "vacío" a muy baja presión, o en presencia de gases especialmente seleccionados. La válvula originaria fue el componente crítico que posibilitó el desarrollo de la electrónica durante la primera mitad del siglo XX, incluyendo la expansión y comercialización de la radiodifusión, televisión, radar, audio, redes telefónicas, computadoras analógicas y digitales, control industrial, entre otros. Algunas de estas aplicaciones son anteriores a la válvula, pero vivieron un crecimiento explosivo gracias a ella.

Principios y funcionamiento básicos

  • Efecto Edison. La gran mayoría de las válvulas electrónicas están basadas en la propiedad que tienen los metales en caliente de liberar electrones desde su superficie.
  • Gases ionizados. En otros casos, se utilizan las características de la conducción electrónica en gases ionizados, esto resulta principalmente importante en los reguladores de tensión, rectificadores de vapor de mercurio, válvula de conmutación T/R, entre otros.
  • Efecto fotoeléctrico En otros casos, el principio de funcionamiento se basa en la emisión de electrones por el efecto fotoeléctrico.

Historia

La válvula o tubo electrónico fue inventado por el científico Británico John Ambrose Fleming en el año 1904, al utilizar una válvula diodo (el diodo Fleming) para pasar corriente alterna a corriente continua (proceso de rectificación). Muchos intentaron mejorar este diodo, pero no lo lograron hasta que en 1907, un inventor de Nueva York, Lee de Forrest patentó, el mismo diodo que Fleming, sólo que con un electrodo más, creando el primer amplificador electrónico verdadero, "El Triodo". Después vino el Tétrodo, el Péntodo y más, en muy diferentes versiones. Desde esta fecha hasta los años 60 su desarrollo fue continuo.

Características

Aunque existe una gran diversidad de tipos de válvulas termoiónicas, tanto en su aplicación como en sus principios de funcionamiento (control de la cantidad de electrones, en triodos, tetrodos, pentodos; modulación de su velocidad en klistrones; acoplo entre el flujo de electrones y una onda electromagnética en tubos de onda progresiva; la mayoría comparten una serie de características comunes que se han ido potenciando al ir avanzando su desarrollo tecnológico.

Tubos electrónicos

Fueron muy utilizados en las décadas de los 50 y 60 previos a la invención del famoso y ya mencionado transistor. Aún podemos encontrar tubos al vacío en antiguos equipos de sonido, radios y televisión, que no esté en uso.

Los transistores, con su bajo consumo de energía y pequeño tamaño pueden utilizarse en equipos electrónicos portátiles que funcionaran con pilas (baterías), algo muy difícil de obtener con los tubos, cuyas desventajas son: su tamaño y su alto consumo de energía.

Pero a partir de los años 90 los tubos volvieron a hacer su parición (en forma evidente). Pero, ¿qué virtudes tiene el tubo para que hoy en día se les esté nuevamente tomando en cuenta? Pues el tubo se puede utilizar para salidas de alta potencia en equipos de audio, amplificadores de guitarra, entre otros. Además si alguna vez ha visto un diagrama de un amplificador de tubos se habrá dado cuenta que son mucho más sencillos que uno similar de transistores y tienen una calidad de sonido superior a un equipo de alta fidelidad actual.

Podemos encontrar además grandes cantidades de tubos totalmente nuevos en existencia para la venta y con rendimientos muy favorables. En países como Rusia, China y algunos países del este de Europa aún los siguen fabricando. Los tubos se utilizan cada vez más, y su popularidad aumenta constantemente.

Filamentos

El filamento es el órgano calefactor que proporciona la energía suficiente para que el cátodo emita una cantidad de electrones adecuada.

En las primeras válvulas, el filamento también actuaba como cátodo (cátodo de caldeo directo). Posteriormente se separaron las funciones, quedando el filamento sólo como calefactor y el cátodo como electrodo separado (cátodo de caldeo indirecto). Ambas formas convivieron ya que el caldeo directo mejora la transferencia térmica entre el cátodo y el filamento, mientras que el caldeo indirecto simplifica grandemente el diseño de los circuitos y permite optimizar cada uno de los electrodos.

El filamento, al estar caliente, se ve sometido al efecto de sublimación del material de su superficie, es decir, su paso al estado gaseoso, lo que va reduciendo su sección en ciertos puntos que ahora se calientan más que el resto, aumentando la sublimación en ellos hasta que el filamento se rompe. Este efecto disminuye enormemente si se trabaja a temperaturas bajas con materiales de alto punto de fusión (Wolframio...). Por ello la temperatura de los filamentos ha ido descendiendo.

Efecto microfónico

Este efecto consiste en la transmisión al filamento de vibraciones mecánicas. Cuando el filamento vibra, transmite estas oscilaciones al cátodo, variando su distancia con la rejilla, lo que produce una modulación en la corriente de electrones. En el ánodo, la señal útil aparece modulada por las vibraciones mecánicas, lo que es especialmente desagradable en el caso de amplificadores de audio, ya que las vibraciones que se acoplan provienen del propio altavoz.

Los campos magnéticos también pueden crear oscilaciones del filamento, por ello algunas válvulas se encerraban en tubos de gran permeabilidad magnética (mu-metal).

Cátodos

El cátodo es el responsable de la emisión de electrones, que debe ser constante a lo largo de la vida de la válvula. Desgraciadamente, esto no es así, y los cátodos se van agotando según envejecen.

Para prolongar la vida de los filamentos, la temperatura de funcionamiento de los cátodos ha ido haciéndose cada vez menor, gracias al empleo de materiales con un potencial de extracción de electrones más bajo (aleaciones de torio, óxidos de lantánidos).

Los cátodos también deben ser buenos conductores, lo que limita la aplicación de algunos recubrimientos a aplicaciones muy particulares. Por ejemplo, el óxido de calcio suele recubrir los filamentos de las pantallas de vacío fluorescentes (VFD).

Ánodos

El ánodo recibe el flujo de electrones que, en la mayoría de las válvulas, han sido acelerados hasta adquirir gran energía que transfieren al ánodo cuando chocan contra él. Por ello, los ánodos de las válvulas de potencia son grandes, muchas veces masivos y forman parte del propio cuerpo de la válvula, pudiendo refrigerarse directamente desde el exterior, por contacto con una superficie fría, aire a presión, vapor de agua, entre otros. Anteriormente, la refrigeración de ánodo se realizaba fundamentalmente por radiación, por lo que las ampollas de vidrio eran grandes y separadas del ánodo, para que éste pudiese adquirir gran temperatura.

La emisión secundaria es un efecto, normalmente indeseable, que se produce en el ánodo, cuando los electrones incidentes, de gran energía, arrancan electrones del metal. Aunque en algunas válvulas este efecto se aprovecha para obtener ganancia, en la mayoría de ellas degrada la señal y debe evitarse.

Importancia del vacío

Un menor grado de vacío implica la presencia de un mayor número de moléculas de gas en la válvula, aumentando el número de colisiones con los electrones y disminuyendo el rendimiento del tubo. Pero un menor vacío implica un mayor desgaste de los filamentos, por lo que históricamente se ha ido avanzando hacia las válvulas de alto vacío mediante un avance conjunto en todos los demás componentes. Sin embargo, algunas válvulas como los tiratrones basan su funcionamiento en la presencia de ciertos gases llenando el tubo.

Los metales y otros materiales tienen propiedades de absorción y absorción de gases de la atmósfera, y cuando se calientan a baja presión los van liberando lentamente. Por ello, aunque se extraiga todo el aire de una válvula, con el uso, el vacío interior se reduce. Para evitarlo se utiliza el getter, que es un material (por ejemplo, magnesio) que se evapora una vez sellado el tubo. El magnesio evaporado se deposita en la superficie del vidrio formando un recubrimiento brillante. El getter adsorbe las moléculas de gas que puedan liberarse en el tubo, manteniendo la integridad del vacío. Cuando entra aire en el tubo, el getter se vuelve blanquecino.

Utilización de cerámicas

El material más utilizado en construcción del "recipiente" de la válvula es el vidrio, ya heredado de la fabricación de bombillas. Pero el vidrio tiene bajo punto de fusión, es un buen aislante térmico y es frágil, de modo que para válvulas de alta potencia y radiofrecuencia se prefiere utilizar cerámicas, que son menos frágiles, tienen buena conductividad térmica y alto punto de fusión. Su dificultad ha sido el establecimiento de uniones estancas y duraderas entre la cerámica y el metal (conexiones de los electrodos, ánodo, disipadores). Una vez resuelto el problema, la cerámica ha desplazado al vidrio en válvulas de potencia y de microondas.

Algunos simbologías de las Válvula termoiónica

Diodo
Triodo
Célula fotoelétrica
Ignitrón










Fuentes