Diferencia entre revisiones de «Matrices lógicas programables»

(Página creada con '{{Objeto|nombre=Matrices Lógicas Programables|imagen=Matriz_p.JPG‎|descripcion= Matriz programable}} <div align="justify"> ''' Matrices Lógicas Programables''':Una matriz e...')
(Etiqueta: no tiene enlaces internos)
 
m (Texto reemplazado: «<div align="justify">» por «»)
 
(No se muestran 10 ediciones intermedias de 5 usuarios)
Línea 1: Línea 1:
{{Objeto|nombre=Matrices Lógicas Programables|imagen=Matriz_p.JPG‎|descripcion= Matriz programable}}  
+
{{Objeto|nombre=Matrices Lógicas Programables|imagen=MatricesL.jpeg|descripcion= Matriz programable}}  
<div align="justify">
+
 
''' Matrices Lógicas Programables''':Una matriz es un conjunto de elementos de cualquier naturaleza  aunque, en general, suelen ser números ordenados en filas y columnas.  
+
''' Matrices Lógicas Programables'''. Una matriz es un conjunto de elementos de cualquier naturaleza  aunque, en general, suelen ser números ordenados en filas y columnas.  
Se  llama  matriz  de orden m × n;  a un conjunto  rectangular de elementos a ij  dispuestos en  m  filas y en n  columnas. El orden de una matriz también se denomina  dimensión  o  tamaño , siendo m  y  n  números naturales.  
+
Se  llama  [[matriz]] de orden m × n;  a un conjunto  rectangular de elementos a ij  dispuestos en  m  filas y en n  columnas. El orden de una matriz también se denomina  dimensión  o  tamaño , siendo m  y  n  números naturales.  
Los dispositivos lógicos programables incorporan una matriz lógica genérica, que puede programarse de forma que el dispositivo (circuito integrado)realice las funciones que se desee.  
+
 
 +
Los dispositivos [[lógicos]] programables incorporan una matriz lógica genérica, que puede programarse de forma que el dispositivo (circuito integrado)realice las funciones que se desee.  
  
 
== Estructura de una matriz ==
 
== Estructura de una matriz ==
 
Normalmente la estructura programable principal consiste en una estructura combinacional, formada por una matriz de puertas AND, a cuyas entradas se conectan las entradas del dispositivo tanto de forma directa como negada. Según el tipo de dispositivo del que dispongamos,esta primera matriz estará o no seguida de una segunda matriz formada en el caso más general por puertas OR, de manera que pueda realizarse fácilmente una suma de productos.
 
Normalmente la estructura programable principal consiste en una estructura combinacional, formada por una matriz de puertas AND, a cuyas entradas se conectan las entradas del dispositivo tanto de forma directa como negada. Según el tipo de dispositivo del que dispongamos,esta primera matriz estará o no seguida de una segunda matriz formada en el caso más general por puertas OR, de manera que pueda realizarse fácilmente una suma de productos.
 
Las matrices programables están formadas por fusibles, que el usuario puede eliminar o dejar intactos para generar la lógica deseada. Para simplificar la representación de estas estructuras, las diferentes entradas de una puerta AND se representan con una sola línea denominada línea producto. En la figura 1a se representan cómo se sitúan los fusibles y en la figura 1b la representación gráfica,donde se observa que un fusible intacto se representa con una 'X' y un fusible eliminado sin ningún símbolo especial en la unión correspondiente.
 
Las matrices programables están formadas por fusibles, que el usuario puede eliminar o dejar intactos para generar la lógica deseada. Para simplificar la representación de estas estructuras, las diferentes entradas de una puerta AND se representan con una sola línea denominada línea producto. En la figura 1a se representan cómo se sitúan los fusibles y en la figura 1b la representación gráfica,donde se observa que un fusible intacto se representa con una 'X' y un fusible eliminado sin ningún símbolo especial en la unión correspondiente.
[[Image: Fgr1.JPG‎ ‎|thumb|right|367x309px|Matrices programables]]  
+
[[Image: Fgr1.JPG‎ ‎|thumb|left|367x309px|Matrices programables]]  
 +
 +
== Propiedades ==
 +
 +
Sólo existe matriz inversa de una matriz cuadrada si ésta es regular.
  
 +
La matriz inversa de una matriz cuadrada, si existe, es única.
  
 +
Entre matrices NO existe la operación de división, la matriz inversa realiza funciones análogas.
  
 +
== Operaciones con matrices ==
 +
===Suma de matrices===
  
 +
La suma de dos matrices  A = (a ij )m×n  y  B = (b ij )p×q  de la misma dimensión  (equidimensionales) : m = p  y  n = q  es otra matriz  C = A+B = (c ij  )m×n = (a ij +b ij )
 +
Es una ley de composición interna con las siguientes propiedades:
  
 +
====  Asociativa ====
 +
A+(B+C) = (A+B)+C
 +
 +
==== Conmutativa ====
 +
A+B = B+A
  
 +
==== Elemento neutro ====
 +
 
 +
( matriz cero 0 m×n  ) , 0+A = A+0 = A
  
 +
==== Elemento simétrico ====
 +
(  matriz opuesta -A ) , A + (-A) = (-A) + A = 0
  
 +
Al conjunto de las matrices  de dimensión  m×n cuyos elementos son números reales lo vamos a  representar por  M m×n  y como hemos visto, por cumplir las propiedades  anteriores,  ( M, + ) es un grupo abeliano.
  
 +
===Producto de un número real por una matriz===
  
 +
Para  multiplicar un escalar por una matriz se multiplica el escalar por  todos los elementos de la matriz, obteniéndose otra matriz del mismo  orden.
 +
Es una ley de composición externa con las siguientes propiedades :
  
 +
==== Producto de matrices ====
 +
Dadas dos matrices  A = (a ij )m×n  y  B = (b ij )p×q  donde n = p, es decir, el número de  columnas de la primera matriz  A  es igual al número de filas de la  matriz  B , se define el producto A·B de la siguiente forma :
 +
El  elemento a que ocupa el lugar (i, j)  en la matriz producto se obtiene  sumando los productos de cada elemento de la fila  i  de la matriz  A  por el correspondiente de la columna  j  de la matriz B.
  
 +
MATRIZ INVERSA
 +
Se  llama matriz inversa de una matriz cuadrada An  y la representamos por  A -1  , a la matriz que verifica la siguiente propiedad : A -1 ·A =  A·A -1  = I
  
 
 
 
== Clasificación ==
 
 
Contadores sincrónicos
 
 
Contadores Asincrónicos
 
Contadores de conteo ascendente
 
Contadores de conteo descenderte
 
=== Contadores sincrónicos===
 
Todos los flip-flops cambian simultáneamente  con cada pulso del reloj ( de acuerdo  con el estado de sus entradas de control).
 
 
=== Contadores asincrónicos===
 
Todos los flip-flops  no cambian simultáneamente  con cada pulso del reloj.
 
 
=== Contadores asincrónicos cuya base  no es potencia de dos ===
 
 
Este tipo de contador puede ser construido  realimentando  convenientemente las salidas  a algunas de las entradas, incluyendo  las entradas directas , para eliminar estados de un contador  2n superior.
 
 
 
== Conteo Programable ==
 
 
En algunas aplicaciones  es importante poder programar diferentes bases  de conteo en un mismo contador por medio de conmutadores o de datos en las entradas de preset.
 
 
== Tiempo de acarreo en contadores ==
 
 
El acarreo en un contador es el tiempo requerido por el mismo para complementar la respuesta a un pulso  de entrada. El tiempo de acarreo para un contador, es el tiempo máximo que toma la respuesta del mismo al pulso de entrada.
 
 
 
== Contadores monolíticos ==
 
 
 
Contadores construidos  a base de integrados con distintas bases de conteo para ser usados en los sistemas digitales, por ser más confiables, mas económicos  y mas pequeños. La familia TTL es la más utilizada.
 
 
== Ejemplos de circuitos integrados, como contadores asincrónicos ==
 
 
 
7490, 7492, 7493, estos contienen 4 flip-flops “amo esclavo” y compuertas adicionales
 
El dispositivo 74HCTLS192, constituye un contador asíncrono reversible con entrada paralela, preparado para efectuar el conteo decimal en código binario BCD.
 
[[Image: 74HC.JPG‎|thumb|right|367x309px|74HCTLS192]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
== Aplicaciones ==
 
== Aplicaciones ==
 
   
 
   
 +
Las matrices se utilizan en  el cálculo numérico, en la resolución de sistemas de ecuaciones  lineales, de las ecuaciones diferenciales y de las derivadas parciales.  Además de su utilidad para el estudio de sistemas de ecuaciones  lineales, las matrices aparecen de forma natural en geometría, estadística, economía, [[informática]], [[física]], etc.
 +
La utilización de matrices  constituye actualmente una parte esencial donde los lenguajes de  programación, ya que la mayoría de los datos se introducen en los  ordenadores como tablas organizadas en filas y columnas : hojas de  cálculo, bases de datos.
  
Las matrices se utilizan en  el cálculo numérico, en la resolución de sistemas de ecuaciones  lineales, de las ecuaciones diferenciales y de las derivadas parciales.  Además de su utilidad para el estudio de sistemas de ecuaciones  lineales, las matrices aparecen de forma natural en geometría, estadística, economía, informática, física, etc.
+
== Fuentes ==
La utilización de matrices  constituye actualmente una parte esencial donde los lenguajes de  programación, ya que la mayoría de los datos se introducen en los  ordenadores como tablas organizadas en filas y columnas : hojas de  cálculo, bases de datos.
+
*Microelectronics, Jacob Millman, [[1979]]
+
*Electrónica Digital. Julio Díaz Calvo. [[Editorial Pueblo y Educación]], [[1989]]
</div>
+
*Circuitos Electrónicos Digitales II, Elías Muñoz Merino,Editorial Pueblo y Educación, [[1980]].
== Fuente ==
+
[[Category:Electrónica]][[Category:Electrónica digital]][[Category:Matrices]]
*Microelectronics, Jacob Millman, 1979
 
*Electrónica Digital. Julio Díaz Calvo. Editorial Pueblo y Educación, 1989
 
 
[[Category:Electrónica]]
 

última versión al 19:36 22 jul 2019

Matrices Lógicas Programables
Información sobre la plantilla
MatricesL.jpeg
Matriz programable

Matrices Lógicas Programables. Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, suelen ser números ordenados en filas y columnas. Se llama matriz de orden m × n; a un conjunto rectangular de elementos a ij dispuestos en m filas y en n columnas. El orden de una matriz también se denomina dimensión o tamaño , siendo m y n números naturales.

Los dispositivos lógicos programables incorporan una matriz lógica genérica, que puede programarse de forma que el dispositivo (circuito integrado)realice las funciones que se desee.

Estructura de una matriz

Normalmente la estructura programable principal consiste en una estructura combinacional, formada por una matriz de puertas AND, a cuyas entradas se conectan las entradas del dispositivo tanto de forma directa como negada. Según el tipo de dispositivo del que dispongamos,esta primera matriz estará o no seguida de una segunda matriz formada en el caso más general por puertas OR, de manera que pueda realizarse fácilmente una suma de productos. Las matrices programables están formadas por fusibles, que el usuario puede eliminar o dejar intactos para generar la lógica deseada. Para simplificar la representación de estas estructuras, las diferentes entradas de una puerta AND se representan con una sola línea denominada línea producto. En la figura 1a se representan cómo se sitúan los fusibles y en la figura 1b la representación gráfica,donde se observa que un fusible intacto se representa con una 'X' y un fusible eliminado sin ningún símbolo especial en la unión correspondiente.

Matrices programables

Propiedades

Sólo existe matriz inversa de una matriz cuadrada si ésta es regular.

La matriz inversa de una matriz cuadrada, si existe, es única.

Entre matrices NO existe la operación de división, la matriz inversa realiza funciones análogas.

Operaciones con matrices

Suma de matrices

La suma de dos matrices A = (a ij )m×n y B = (b ij )p×q de la misma dimensión (equidimensionales) : m = p y n = q es otra matriz C = A+B = (c ij )m×n = (a ij +b ij ) Es una ley de composición interna con las siguientes propiedades:

Asociativa

A+(B+C) = (A+B)+C

Conmutativa

A+B = B+A

Elemento neutro

( matriz cero 0 m×n ) , 0+A = A+0 = A

Elemento simétrico

( matriz opuesta -A ) , A + (-A) = (-A) + A = 0

Al conjunto de las matrices de dimensión m×n cuyos elementos son números reales lo vamos a representar por M m×n y como hemos visto, por cumplir las propiedades anteriores, ( M, + ) es un grupo abeliano.

Producto de un número real por una matriz

Para multiplicar un escalar por una matriz se multiplica el escalar por todos los elementos de la matriz, obteniéndose otra matriz del mismo orden. Es una ley de composición externa con las siguientes propiedades :

Producto de matrices

Dadas dos matrices A = (a ij )m×n y B = (b ij )p×q donde n = p, es decir, el número de columnas de la primera matriz A es igual al número de filas de la matriz B , se define el producto A·B de la siguiente forma : El elemento a que ocupa el lugar (i, j) en la matriz producto se obtiene sumando los productos de cada elemento de la fila i de la matriz A por el correspondiente de la columna j de la matriz B.

MATRIZ INVERSA Se llama matriz inversa de una matriz cuadrada An y la representamos por A -1 , a la matriz que verifica la siguiente propiedad : A -1 ·A = A·A -1 = I

Aplicaciones

Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Además de su utilidad para el estudio de sistemas de ecuaciones lineales, las matrices aparecen de forma natural en geometría, estadística, economía, informática, física, etc. La utilización de matrices constituye actualmente una parte esencial donde los lenguajes de programación, ya que la mayoría de los datos se introducen en los ordenadores como tablas organizadas en filas y columnas : hojas de cálculo, bases de datos.

Fuentes

  • Microelectronics, Jacob Millman, 1979
  • Electrónica Digital. Julio Díaz Calvo. Editorial Pueblo y Educación, 1989
  • Circuitos Electrónicos Digitales II, Elías Muñoz Merino,Editorial Pueblo y Educación, 1980.