Diferencia entre revisiones de «Asteroide»

(Etiqueta: revisar proyecto)
m (Protegió «Asteroide» ([Editar=Sólo moderadores] (indefinido) [Trasladar=Sólo moderadores] (indefinido)))
 
(No se muestran 3 ediciones intermedias de 3 usuarios)
Línea 1: Línea 1:
{{Astros
+
{{Sistema:Artículo certificado
 +
|contenido=la '''MSc. Mayra Arap Fresno''', perteneciente a la '''[[Universidad Agraria de La Habana]]''' (UNAH).
 +
}}
 +
 
 +
{{Definición
 
|nombre= Asteroide
 
|nombre= Asteroide
|imagen=Sonda_Galileo.JPG
+
|imagen= Asteroide.jpg
|descripcion=Un asteroide es un cuerpo rocoso, carbonáceo o metálico más pequeño que un planeta y mayor que un meteoroide, que orbita alrededor del Sol. Esta imagen muestra la fotografía del asteroide Gaspra obtenida por la sonda Galileo mientras se dirigía a [[Júpiter (planeta)|Júpiter]].
+
|tamaño=
|descubridor=
+
|concepto= Cuerpo rocoso, carbonáceo o metálico más pequeño que un planeta y mayor que un meteoroide, que gira alrededor del Sol en una órbita interior a la de Neptuno.
|fecha_descubrimiento=
+
}}'''Asteroide'''. Cuerpo rocoso, carbonáceo o metálico más pequeño que un [[planeta]] y mayor que un meteoroide, que gira alrededor del [[Sol]] en una órbita interior a la de [[Neptuno]]. Se clasifican en función de su ubicación, composición o agrupamiento. Para la ubicación se toma como referencia la posición relativa de estos cuerpos respecto al Sol y los planetas. Para la composición se usan los datos extraídos de los espectros de absorción. Los agrupamientos se basan en los valores nominales similares del semieje mayor, la excentricidad y la inclinación de la órbita. Debido a su diminuto tamaño y gran distancia de la [[Tierra]], casi todo lo que sabemos de ellos procede de medidas astrométricas y radiométricas, curvas de luz y espectros de absorción.
|satélite_de=|número_satélites=
+
 
|composición_atmósfera=
+
== Etimología ==
|presión_atmosférica=
+
 
|temperatura=
+
«Asteroide» es una palabra de origen griego, ἀστεροειδής, que se puede traducir al español como «de forma estelar». Hace alusión al aspecto que ofrecen estos cuerpos vistos a través de un telescopio. Fue Herschel quien el [[6 de mayo]] de [[1802]] propuso ante la [[Royal Society]] de [[Londres]] que tanto [[Ceres]] como [[Palas (asteroide)|Palas]], únicos asteroides descubiertos hasta ese momento, eran un nuevo tipo de cuerpos, a los que llamó asteroides. Sin embargo, la mayoría de los astrónomos de la época rechazó la propuesta de Herschel por considerarla indigna, ridícula o sin precedentes, y continuaron considerándolos planetas. [[Giuseppe Piazzi]], descubridor de Ceres, empleó el término planetoide y solo [[Heinrich Olbers]] secundó a Herschel. «Asteroide» no empezó a generalizarse hasta principios del [[siglo XX]].
|área_de_superficie=
+
 
|masa=
+
En [[2013]], Clifford Cunningham, en un encuentro de la división planetaria de la Sociedad Astronómica Americana, argumentó que la propuesta original procedía del especialista en griego Charles Burney. Según Cunningham, Herschel pidió sugerencias a varios amigos entre los que estaban Joseph Banks y Charles Burney. A su vez, Banks escribió a Stephen Weston, quien propuso el nombre «aorate», y Burney escribió a su hijo proponiendo nombres como «stellula» en clara alusión al diminuto tamaño de estos cuerpos.
|volumen=
+
 
|dimensiones=
+
== Historia ==
|densidad=
+
 
|diámetro=
+
Durante siglos, astrónomos, físicos y matemáticos se preguntaron por el enorme vacío que había entre las órbitas de [[Marte (planeta)|Marte]] y [[Júpiter (planeta)|Júpiter]], pero no fue hasta el [[siglo XIX]] que Piazzi dio una primera respuesta al descubrir Ceres. En el siglo siguiente, los astrónomos ya conocían miles de asteroides, principalmente agrupados en el cinturón de asteroides. Con la llegada de las búsquedas automatizadas a finales del [[siglo XX]] y principios del XXI, el número de asteroides conocido se disparó. En [[2012]], había más de seiscientas mil órbitas computadas.
|gravedad=
+
 
|etiq_cubadebate =asteroide
+
El primer investigador que se ocupó del hueco que había entre las órbitas de Marte y Júpiter fue [[Johannes Kepler]]. Kepler formuló la hipótesis de que debía existir un planeta desconocido en ese espacio, aunque agregó que quizá no fuese suficiente con uno.
}}
+
 
 +
Posteriormente otros científicos retomaron la cuestión. [[Isaac Newton]] opinaba que tanto Júpiter como Saturno habían sido puestos por influencia divina en el exterior del sistema solar para no perturbar las órbitas de los planetas interiores. El filósofo [[Immanuel Kant]] dijo que el espacio vacío estaba en proporción a la masa de Júpiter. [[Johann Heinrich Lambert]] pensaba que el hueco era quizá el resultado de la expulsión de algún hipotético planeta debido a la influencia gravitatoria de [[Júpiter (planeta)|Júpiter]] y [[Saturno (planeta)|Saturno]].
 +
 
 +
Ya en el [[siglo XVIII]] varios astrónomos estaban dispuestos a creer en la existencia de múltiples planetas desconocidos en el [[sistema solar]]. Sin embargo, fue Johann Daniel Titius, en [[1766]], el primero en aportar la explicación para la distancia entre las órbitas de Marte y Júpiter que con el tiempo se conocería como ley de Titius-Bode. La relación numérica atrajo la atención de [[Johann Elert Bode]], quien no dudó de su validez y la publicó en [[1772]]. El descubrimiento de [[Urano]] por [[William Herschel]] en [[1781]] a la distancia que vaticinaba la ley fue la confirmación definitiva de su fiabilidad y reforzó la creencia en la existencia de un planeta entre Marte y Júpiter.
 +
 
 +
Uno de los astrónomos que más interés se tomó en la localización del [[planeta]] fue el barón Franz Xaver von Zach, director del observatorio de Seeberg. Zach seleccionó la región zodiacal, preparó un mapa de estrellas que le permitiera determinar la presencia de nuevos objetos y calculó incluso una hipotética órbita para el desconocido planeta. En [[1800]], tras estériles resultados, convenció a otros astrónomos para que le ayudaran en la búsqueda. El [[20 de septiembre]] de [[1800]] se constituyó la Vereinigte Astronomische Gesellschaft, conocida como Sociedad de Lilienthal, con el propósito de cartografiar la región del Zodiaco hasta las más débiles estrellas. Entre los miembros fundadores estaban Karl Ludwig Harding y Olbers, quienes más adelante descubrirían uno y dos asteroides respectivamente.
 +
 
 +
Para lograr sus fines, dividieron el Zodiaco en veinticuatro partes iguales y escogieron a otros astrónomos hasta completar la cifra de las divisiones. A estos astrónomos se les conoce como la policía celeste, aunque varios no llegaron a participar activamente en la búsqueda. Entre los seleccionados estaban Herschel y Piazzi, quien no recibió una invitación formal para unirse a la empresa, aunque a la postre fue el descubridor del nuevo planeta.
 +
 
 +
La noche del [[1 de enero]] de [[1801]], mientras trabajaba en la composición de un catálogo de estrellas, Piazzi encontró un objeto en la constelación del Toro. Observó, en las noches sucesivas, que el objeto se movía sobre el fondo estelar. Al principio pensó que se trataba de un error, pero luego llegó a la conclusión de que había descubierto un cometa. El [[4 de enero]] anunció a la prensa el hallazgo, gracias a lo cual varios astrónomos europeos, entre ellos [[Joseph Lalande]] quien pidió a Piazzi que le enviara sus observaciones, supieron la noticia a finales de [[febrero]]. Más adelante compartió sus observaciones por sendas cartas con Bode y Barnaba Oriani en las que mencionaba la ausencia de nebulosidad alrededor del objeto.
 +
 
 +
Con los datos que le aportaba Piazzi en su carta, Bode calculó una órbita preliminar. El [[26 de marzo]] comunicó en la Academia Prusiana de las Ciencias que la órbita era consistente con el planeta que faltaba entre Marte y Júpiter y posteriormente informó a Zach para que lo publicase en Monatliche Correspondenz. Llegó incluso a proponer el nombre de Juno para el nuevo planeta. Piazzi ya había bautizado su descubrimiento como Cerere Ferdinandea en honor a la diosa patrona de [[Sicilia]] y al rey Fernando. A la larga, la comunidad astronómica aceptó el nombre de Ceres para el nuevo objeto.
 +
 
 +
Lalande pasó las observaciones de Piazzi a Johann Karl Burckhardt quien calculó una órbita elíptica con ellas y envió sus resultados a Zach a primeros de junio. A finales del mismo mes, la comunidad astronómica estaba convencida de que Ceres era un nuevo planeta. Sin embargo, la tardanza de Piazzi en proporcionar los datos de sus observaciones frustraron los intentos de recuperarlo. Zach, en carta enviada a Oriani el [[6 de julio]], criticó a Piazzi por haber mantenido en secreto su trabajo. Para finales de agosto muchos astrónomos, en especial en [[Francia]], dudaban de la existencia del objeto.
 +
 
 +
En [[septiembre]] se publicaron todas las observaciones de Piazzi. Carl Friedrich Gauss calculó una nueva órbita elíptica que mejoraba mucho la anteriormente obtenida por Burckhardt, quien en realidad trabajó con pocas observaciones. El [[7 de diciembre]] Zach llegó a ver el planeta enano, pero el mal tiempo de los siguientes días le impidió continuar con sus observaciones. Finalmente, el [[31 de diciembre]] Zach y el [[2 de enero]] Olbers observaron independientemente Ceres en la posición predicha por los cálculos de Gauss, con lo que se confirmaba la existencia del objeto.
 +
 
 +
Unos meses después de la recuperación de Ceres, el [[28 de marzo]] de [[1802]], Olbers encontraba otro objeto de características parecidas, pero con inclinación y excentricidad mayores. Dos días después estaba seguro de que se hallaba ante un nuevo [[planeta]], al que denominó Palas, pues observó que se desplazaba respecto a las estrellas de fondo. El [[4 de abril]], Zach confirmó el descubrimiento de Olbers y extendió la noticia que fue enseguida aceptada por la mayoría de astrónomos europeos. Para tratar de casar la ley de Bode-Titius, cuyo fundamento físico, aunque desconocido, no había sido puesto en duda, con la presencia de dos cuerpos en lugar de uno, Olbers propuso que Ceres y Palas eran trozos de un planeta mayor que se había fragmentado por fuerzas internas o por un impacto.
 +
 
 +
La consecuencia inmediata de la teoría de Olbers fue que podrían existir más objetos entre las órbitas de Marte y Júpiter aún por descubrir. Así, Harding, tras constantes observaciones de la región del firmamento donde se cruzaban las órbitas de Ceres y Palas, terminó por encontrar a Juno el [[1 de septiembre]] de [[1804]]. Días después, Hofrath Huth, en una carta enviada a Bode, aventuraba que no sería el último descubrimiento y que estos cuerpos podrían haberse originado a la vez que el resto de planetas y de la misma forma, en contra de lo que postulaba Olbers.
 +
 
 +
Casi tres años después, Olbers descubrió un cuarto asteroide, Vesta, en la misma región del cielo y que ha resultado ser el más brillante. El nombre fue propuesto por Gauss. Estos cuatro descubrimientos reforzaron la teoría olbersiana, a pesar de ser objetivamente pocos. Sin embargo, ya en [[1812]], [[Joseph-Louis de Lagrange]] la cuestionaba, afirmando que era extraordinaria, pero improbable.
 +
 
 +
Tras los primeros descubrimientos, pasaron cerca de cuarenta años hasta que Karl Ludwig Hencke encontró el quinto tras cinco lustros de intensa búsqueda. Este largo lapso de tiempo se puede explicar por tres causas principales. En primer lugar, la mayoría de astrónomos, influidos por la teoría de Olbers, hicieron sus búsquedas en la misma región del espacio en las que se descubrieron los primeros cuerpos. En segundo, la búsqueda sistemática de nuevos planetas no fue considerada una prioridad astronómica, puesto que los primeros cuerpos se encontraron por accidente. Por último, la ausencia de buenas cartas celestes, donde se mostrase de forma inequívoca la posición de las estrellas, desalentó a los astrónomos porque no se tenía certeza de hallarse ante un nuevo [[planeta]] o una [[estrella]].
 +
 
 +
Con el acceso a un número cada vez mayor de cartas celestes, los astrónomos dispusieron de medios para emprender la tarea con suficientes garantías. Así, en [[1857]] ya se habían descubierto cincuenta y el número cien se catalogó en [[1868]]. El [[22 de diciembre]] de [[1891]], Maximilian Franz Wolf descubrió Brucia mediante la astrofotografía, técnica que aceleró el aumento de la nómina de asteroides. Para [[1923]] ya había mil asteroides catalogados y en [[1985]] se registró el número tres mil. A finales del [[siglo XX]], el refinamiento de las técnicas de observación y el empleo de programas automatizados, como Linear y Spacewatch, incrementó exponencialmente la cantidad de asteroides conocidos. En [[1999]] eran diez mil; en [[2002]], cincuenta mil; el número cien mil se catalogó en [[2005]]; para [[2014]] ya eran cuatrocientos mil los cuerpos catalogados. Algunas estimaciones permiten suponer que haya más de un millón de asteroides con tamaños superiores a un kilómetro.
  
'''Asteroide'''. Cuerpo rocoso, carbonáceo o metálico más pequeño que un [[planeta]] y mayor que un [[meteoroide]], que orbita alrededor del [[Sol]] en una órbita interior a la de [[Neptuno (planeta)|Neptuno]]. En la literatura anglosajona en ocasiones son denominados también minor planets "planetas menores" y en castellano también se suelen llamar planetoides. Sus tamaños van desde casi 1000 km en el caso de Ceres hasta unos pocos centímetros o menos.
+
Mientras aumentaba el número de asteroides, los astrónomos se cuestionaban su origen. François Arago observó que las órbitas no se intersecaban en la misma región del espacio, lo que ponía en duda la teoría de Olbers, aunque admitió que el entrelazamiento de las órbitas sugería algún tipo de relación. Más adelante, en [[1867]], Daniel Kirkwood postuló que los asteroides se habían originado a partir de un anillo de materia que no llegó a formar un planeta debido a la influencia gravitatoria de Júpiter. Esta teoría terminó por convertirse en la dominante en los círculos astronómicos. El mismo Kirkwood encontró que no existían asteroides cuyos periodos de traslación tuviesen una relación de números enteros sencillos con Júpiter por lo que se producían huecos en la distribución de los asteroides. En [[1918]], Kiyotsugu Hirayama encontró similitudes en los parámetros orbitales de varios asteroides, concluyó que tenían un origen común, probablemente tras colisiones catastróficas, y llamó a estas agrupaciones familias de asteroides.
  
 
== Características generales ==
 
== Características generales ==
  
Los asteroides poseen unas características físicas que los diferencian de los cometas y en su inmensa mayoría se hallan situados entre las órbitas de [[Marte (planeta)|Marte]] y [[Júpiter (planeta)|Júpiter]], en el denominado cinturón de asteroides o cinturón principal.
+
Los asteroides son cuerpos menores, rocosos y que orbitan alrededor del [[Sol]] a distancias inferiores a la de Neptuno. La mayoría está situada entre las órbitas de Marte y Júpiter. Tienen tamaños reducidos y formas irregulares, salvo algunos de mayor tamaño como Palas, Vesta o Higía que tienen formas ligeramente redondeadas. Se originaron a partir de la colisión de cuerpos mayores que no llegaron a conformar un planeta por la influencia gravitatoria de Júpiter.
 +
 
 +
=== Formas, tamaños y distribución de masas ===
 +
 
 +
El tamaño de los asteroides varía entre los 1000 km del más grande hasta rocas de apenas una decena de metros. Los tres más grandes son similares a planetas en miniatura: Son más o menos esféricos, su interior está parcialmente diferenciado y se cree que son protoplanetas. Sin embargo, la gran mayoría son mucho más pequeños, de forma irregular y, o bien son restos supervivientes de los primitivos planetésimos, o bien fragmentos de cuerpos más grandes producidos tras colisiones catastróficas.
 +
 
 +
Ceres es, con diferencia, el más grande. Los siguientes son Palas y Vesta, ambos con diámetros poco mayores de 500 km. Vesta, además, es el único asteroide del cinturón principal que, en ocasiones, puede verse a simple vista. En contadas ocasiones, asteroides cercanos a la [[Tierra]] como Apofis pueden verse con el ojo desnudo.
 +
 
 +
La masa de todos los asteroides del cinturón principal está estimada entre 2,8 y 3,2×1021 kg; o, lo que es igual, un 4 % de la masa de la [[Luna]]. Ceres, con 9,5×1020 kg, representa la tercera parte del total. Junto a Vesta (9 %), Palas (7 %) e Higía (3 %) alcanza a más de la mitad de la masa. Los siguientes tres asteroides Davida (1,2 %), Interamnia (1 %) y Europa (0,9 %) solo añaden otro 3 % a la masa total. A partir de aquí, el número de asteroides aumenta rápidamente al tiempo que sus masas individuales disminuyen.
 +
 
 +
El número de asteroides disminuye notablemente conforme aumenta el tamaño. Aunque esto sigue una distribución de potencias, hay saltos para los 5 y 100 km donde se encuentran más asteroides de lo esperado según una distribución logarítmica.
 +
 
 +
== Distribución en el sistema solar ==
 +
 
 +
=== Asteroides cercanos a la Tierra ===
 +
 
 +
Los asteroides cercanos a la [[Tierra]] (NEA, acrónimo inglés de Near-Earth Asteroids) son todos aquellos objetos astronómicos que tienen una órbita cercana a la Tierra y no son cometas. Hay más de 10 000 asteroides conocidos con estas características con diámetros que varían desde un metro a los aproximadamente 32 km de Ganimedes. Los que superan el kilómetro se acercan a los 1000. Eros fue el primer asteroide de este grupo en ser descubierto.
 +
 
 +
Parte de estos cuerpos son residuos de cometas extinguidos. Otros NEA se cree que se originan en el cinturón de asteroides donde la influencia gravitatoria de Júpiter expulsa al [[sistema solar]] interior a los asteroides que caen en los huecos de Kirkwood. El efecto Yarkovsky contribuye a que el suministro de asteroides a las resonancias jovianas sea continuo.
 +
 
 +
La duración estimada de los NEA es de unos pocos millones de años. Su composición es comparable a la de los asteroides del cinturón principal o a la de los cometas de periodo corto.
 +
 
 +
Los NEA se dividen en tres grupos principales atendiendo al semieje mayor, perihelio y afelio.
 +
 
 +
==== Asteroides Atón ====
 +
 
 +
Son aquellos que tienen un semieje mayor inferior a 1 ua. El asteroide Atón da nombre al grupo. Si además no cruzan la órbita terrestre se les denomina asteroides Apohele, asteroides Atira u objetos interiores a la [[Tierra]]. Algunos asteroides de este grupo, como Cruithne, tienen órbitas similares a la terrestre.
 +
 
 +
==== Asteroides Apolo ====
 +
 
 +
Son aquellos que tienen un semieje mayor superior a 1 ua y cruzan la órbita de la Tierra. El asteroide Apolo da nombre al grupo.
 +
 
 +
==== Asteroides Amor ====
 +
 
 +
Son aquellos cuyo perihelio es mayor que el afelio terrestre e inferior a 1,3 ua. El asteroide Amor.
 +
 
 +
==== Asteroides potencialmente peligrosos ====
 +
 
 +
Se llaman asteroides potencialmente peligrosos (PHA, acrónimo en inglés de Potentially Hazardous Asteroids) a aquellos que se aproximan a la [[Tierra]] a menos de 0,05 ua y tienen una magnitud absoluta inferior a 22. El más grande de estos cuerpos es Toutatis.
 +
 
 +
=== Asteroides del cinturón principal ===
 +
 
 +
El cinturón de asteroides es una región del sistema solar comprendida entre las órbitas de Marte y Júpiter. La mayor parte de los asteroides forma parte de él, a distancias comprendidas entre 2 y 3,5 ua. Más de la mitad de la masa la constituyen Ceres, Palas, Vesta, Juno e Higía, aunque la masa total del cinturón apenas supone un 4 % de la masa de la [[Luna]].
 +
 
 +
El cinturón de asteroides se formó en la nebulosa protosolar junto con el resto del [[sistema solar]]. Los fragmentos de material contenidos en la región del cinturón habrían podido formar un planeta, pero las perturbaciones gravitacionales de Júpiter, el planeta más masivo, produjeron que estos fragmentos colisionaran entre sí a grandes velocidades y no pudieran agruparse, resultando en el residuo rocoso que se observa en la actualidad. Una consecuencia de estas perturbaciones son los huecos de Kirkwood, zonas donde no se encuentran asteroides debido a resonancias orbitales con Júpiter que provocan que sus órbitas se tornen inestables.
 +
 
 +
El cinturón de asteroides está dividido en varias regiones según los límites que marcan las resonancias jovianas. Sin embargo, no todos los autores se ponen de acuerdo. Para la mayoría se divide en interior, exterior y medio o principal propiamente dicho, cuyos límites son las resonancias 4:1 y 2:1. A su vez, el cinturón principal se divide en tres zonas designadas con números romanos y limitadas por las resonancias 3:1 y 5:2. Una última resonancia, 7:3, marca una interrupción en la zona III. Algunos asteroides tienen órbitas tan excéntricas que llegan a cruzar la de Marte (en inglés, Mars-crossing asteroids).
 +
 
 +
==== Hungarias ====
 +
 
 +
Los hungarias o asteroides del grupo de Hungaria son cuerpos menores situados entre 1,78 y 2,06 ua, con inclinaciones orbitales elevadas y excentricidad menor de 0,18. Son el resultado de una colisión catastrófica producida hace menos de quinientos millones de años y cuyo fragmento mayor es Hungaria, que da nombre al grupo, la región y la familia. La mayoría de los cuerpos de este grupo pertenecen a la familia asteroidal de Hungaria. Son objetos muy brillantes, con magnitudes absolutas inferiores a 18 y pertenecen a los tipos espectrales E y X.
 +
 
 +
==== Hildas ====
 +
 
 +
Los hildas o asteroides del grupo de Hilda son cuerpos menores que tienen resonancia orbital 3:2 con Júpiter y un semieje mayor comprendido entre 3,8 y 4,1 ua aproximadamente. Los miembros centrales del grupo tienen una alta estabilidad orbital y pertenecen a los tipos espectrales D y P. La mayoría está agrupada en las familias de Hilda y de Schubart.
 +
 
 +
=== Asteroides troyanos ===
 +
 
 +
Los asteroides troyanos son asteroides que comparten órbita con un planeta. Se distribuyen en dos regiones alargadas y curvas alrededor de los puntos estables de Lagrange L4 y L5, situados 60° delante y detrás del planeta respectivamente. El nombre troyano se debe a que se estableció la convención de bautizar a los asteroides que ocupaban dichos puntos de la órbita de Júpiter con el nombre de los personajes de la guerra de Troya.
 +
 
 +
Tradicionalmente el término se ha referido a los asteroides troyanos de Júpiter, los primeros en ser descubiertos y los más numerosos hasta la fecha con diferencia. Sin embargo, con el descubrimiento de asteroides en los puntos de Lagrange de otros planetas del sistema solar, el término se ha extendido para englobarlos a todos. Solo Saturno y los planetas interiores a la [[Tierra]] no tienen asteroides troyanos confirmados. En el caso de los troyanos de Júpiter, los que anteceden al planeta pertenecen al grupo del campo griego y los que siguen al planeta al grupo del campo troyano.
  
Vistos desde la [[Tierra (planeta)|Tierra]], los asteroides tienen aspecto de estrellas, de ahí su nombre (''ἀστεροειδής'' en griego significa "de figura de estrella"), que les fue dado por [[John Herschel]] poco después de que los primeros fueran descubiertos.
+
Existen dos teorías para explicar su origen y ubicación. La primera indica que se formaron durante la última etapa de acreción planetaria en la misma región en la que se encuentran. La segunda establece que, durante la migración planetaria, el primitivo cinturón de Kuiper se desestabilizó y millones de objetos fueron expulsados al interior del sistema solar donde se incorporaron a los puntos de Lagrange de los planetas gaseosos.
  
La mayoría de los asteroides de nuestro [[sistema solar]] poseen órbitas semiestables entre [[Marte (planeta)|Marte]] y [[Júpiter (planeta)|Júpiter]], conformando el llamado [[cinturón de asteroides]], pero algunos son desviados a órbitas que cruzan las de los planetas mayores.
+
Aquiles, el [[22 de febrero]] de [[1906]] en el punto L4 de la órbita joviana, fue el primer troyano en ser descubierto. Hubo de transcurrir casi un siglo para descubrir troyanos de otros planetas. El [[20 de junio]] de [[1990]] se encontró Eureka, primer troyano de Marte, y el [[21 de agosto]] de [[2001]] se halló a 2001 QR322, el primero de Neptuno. Más tarde se descubrieron sendos troyanos en las órbitas de la [[Tierra]] y [[Urano]].
  
== Tamaños de los asteroides ==
+
=== Centauros ===
  
Los tamaños de los asteroides son tan grandes como el número de ellos. El más grande descubierto es Ceres, con un diámetro de 952,4 kilómetros. El tamaño oscila del tamaño de Ceres hasta el tamaño de pequeñas piedras, motas de polvo, guijarros y pelotas. Se estima que existen hasta 2 millones de asteroides mayores que 1 kilómetro. Cerca de 150 millones o más que miden más de 100 metros, billones que miden más de 10 metros y cientos de billones que miden más de 1 metro. Si contamos todos (desde Ceres hasta una mota de polvo o un guijarro), nos saldrían miles de billones, quizás trillones o más de asteroides.
+
Se denominan centauros a un grupo de cuerpos menores que se encuentran en la parte exterior del sistema solar orbitando entre los grandes planetas. Quirón orbita entre Saturno y Urano, Damocles entre Marte y Urano. Estos cuerpos tienen órbitas inestables, muy influidas gravitatoriamente por la gran masa de Júpiter.
  
== Clasificación ==
+
== Clasificación según tipos espectrales ===
  
Los asteroides pueden ser clasificados por su espectro óptico, que corresponde a la composición de la superficie de los asteroides, y teniendo en cuenta también su albedo, en los tipos:
+
El estudio de la luz reflejada por los asteroides proporciona indicios de sus composiciones superficiales. El análisis de los espectros de absorción de cientos de asteroides ha permitido clasificarlos en diferentes tipos atendiendo a diversos criterios, siendo los principales tipos «S», «C», «M», «V» y «D». Sin embargo, distintos materiales pueden tener similiares espectros de absorción que, a su vez, pueden estar afectados por el estado de la superficie: si es porosa o compacta; si las rocas están más o menos fragmentadas; si está cubierta de polvo; o si ha sufrido una larga exposición a las radiaciones solar y cósmica. Los principales modelos de clasificación espectral son Tholen y SMASS.
  
*'''Tipo C''': tiene un albedo menor que 0,04 y constituye el 75% de los asteroides conocidos. Son extremadamente oscuros, semejantes a meteoritos. Parecen contener un elevado porcentaje de carbono.
+
=== Tipo espectral S ===
*'''Tipo D''': este tipo de asteroides tiene un albedo muy bajo (0,02-0,05). Son muy rojos, en longitudes de onda largas, debido quizás a la presencia de materiales con gran cantidad de carbono. Son muy raros en el Cinturón Principal y se les encuentra con mayor frecuencia en distancias superiores a 3,3 unidades astronómicas del Sol y su período orbital es la mitad del de [[Júpiter (planeta)|Júpiter]], es decir están en resonancia 2:1.
 
*'''Tipo S''': este tipo representa alrededor del 17% de los asteroides conocidos. Tienen un albedo de 0,14 como promedio y son de composición metálica, formados fundamentalmente por silicio.
 
*'''Tipo M''': incluye gran parte del resto de asteroides. Son asteroides brillantes (albedo 0,10-0,18), casi exclusivamente formados por níquel y hierro.
 
  
Hay otros grupos de asteriodes raros, el número de tipos continúa creciendo y están siendo estudiados los siguientes:
+
Los asteroides del tipo S representan alrededor del 17 % de los asteroides conocidos y tienen un albedo promedio de 0,14. Contienen metales en su composición y son formados fundamentalmente por silicio. Abundan en la parte interna del Cinturón.
*'''Tipo T''': Se caracterizan por un bajo albedo (0,04-0,11).
 
*'''Tipo E'''
 
*'''Tipo R'''
 
*'''Tipo V''': por ejemplo Vesta.
 
  
=== Posición en el sistema solar ===
+
=== Tipo espectral C ===
  
Clasificación por la posición del sistema solar.
+
Los asteroides del tipo C tienen un albedo menor que 0,04 y constituyen más de la mitad de los asteroides conocidos. Son extremadamente oscuros y semejantes a meteoritos. Contienen rocas con un elevado porcentaje de [[carbono]].
  
==== Cinturón de asteroides ====
+
=== Tipo espectral M ===
  
La mayor parte de los asteroides y cometas conocidos giran alrededor del Sol en una agrupación que se conoce con el nombre de cinturón de asteroides, que se encuentra entre [[Marte (planeta)|Marte]] y [[Júpiter (planeta)|Júpiter]]. Este cinturón está a una distancia del [[Sol]] comprendida entre 2 y 3,5 unidades astronómicas (ua), y sus periodos de revolución están entre 3 y 6 años.
+
Los asteroides del tipo M son brillantes (albedos entre 0,10 y 0,18), ricos en metales (principalmente níquel y hierro) y parecen proceder del núcleo de asteroides diferenciados.
El 22 de agosto de 2006, Ceres, fue reclasificado como planeta enano junto con [[Plutón]], Eris y Makemake, Haumea, que fueron añadidos el [[17 de septiembre]] de [[2008]].
 
  
El asteroide [[2004]] FH durante su paso cerca de la [[Tierra]], con un diámetro de 30 m. En su punto más próximo se encontraba a 43.000 km, aproximadamente 10 veces más próximo que la [[Luna]]. La otra luz que se observa en la imagen es un satélite artificial. Filmación hecha el 18 de marzo de [[2004]].
+
=== Tipo espectral V ===
  
==== Asteroides cercanos a la Tierra (NEA) ====
+
Estos asteroides, también llamados vestoides, son objetos astronómicos cuyo espectro es muy similar al de Vesta, el más grande con diferencia. La mayoría tiene valores de excentricidad e inclinación de la órbita parecidos a los de Vesta y un rango del semieje mayor entre 2,18 y 2,5 ua (hueco de Kirkwood 3:1). Esto permite suponer un origen común tras un gran impacto sobre Vesta. Son relativamente brillantes y en composición están equiparados a los asteroides del tipo S, pero contienen más piroxeno. Están relacionados con los meteoritos HED.
  
Existe un especial interés en identificar asteroides cuyas órbitas interseccionan la órbita de la [[Tierra]]. Los tres grupos más importantes de asteroides cercanos a la Tierra son los asteroides [[Amor]], los asteroides [[Apolo]] y los asteroides [[Atón]].
+
=== Tipo espectral D ===
  
==== Asteroides troyanos ====
+
Los asteroides del tipo D tienen un albedo muy bajo (comprendido entre 0,02 y 0,05). Son muy rojos en longitudes de onda largas, debido quizás a la presencia de materiales con gran cantidad de [[carbono]]. Son muy raros en el cinturón principal y se les encuentra con mayor frecuencia en distancias superiores a 3,3 ua del [[Sol]], donde su período orbital es del orden de la mitad del de Júpiter; es decir, están en las proximidades de la resonancia 2:1.
  
Se denominan «asteroides troyanos» a los pertenecientes a un grupo de asteroides que se mueven sobre la órbita de [[planeta Júpiter|Júpiter]]. Están situados en los dos puntos de Lagrange triangulares a 60 grados por delante, L4 (precediendo a Júpiter en su órbita), y por detrás de Júpiter, L5 (siguiéndolo a Júpiter en su órbita).
+
== Riesgo de impacto con la Tierra ==
  
También el planeta [[Marte (planeta)|Marte]] tiene por lo menos un asteroide de tipo troyano (5261) [[Eureka]], que ocupa el punto L5 del sistema [[Sol]]-[[Marte (planeta)|Marte]].
+
Los Asteroides Cercanos a la Tierra (Near Earth Asteroids o NEA) se dividen en tres categorías: Atones, Apolos y Amores, siguiendo el nombre de cada prototipo (Atón, Apolo y Amor). Bajo ciertas condiciones sería posible un impacto con nuestro [[planeta]]. Si además consideramos a los cometas, generalmente menos masivos pero igualmente con gran poder destructor, el grupo que los incluye a todos se llama Objetos Cercanos a la Tierra, en inglés Near Earth Objects (NEO).
  
Igualmente el planeta [[Neptuno (planeta)|Neptuno]] tiene al menos cinco asteroides troyanos; los primeros en ser descubiertos fueron 2001 QR 322 (también denominado 2001 QR322), y 2004 UP10, que orbita delante de Neptuno en su punto lagrangiano L 4). En junio de [[2006]] se descubrieron tres nuevos asteroides troyanos de Neptuno.
+
Actualmente existen unos 4000 objetos catalogados como NEO, según «NeoDys» (Near Earth Objects - Dynamic Site), un proyecto de la [[Universidad de Pisa]] que proporciona información actualizada de este tipo de astros. Finalmente, si un NEA se aproxima a menos de 0,05 unidades astronómicas (7 millones y medio de kilómetros) de la [[Tierra]], se le denomina PHA (asteroide potencialmente peligroso, por sus siglas en inglés). De ellos hay clasificados unos 800 en la actualidad y son los que representan un peligro para la civilización si en verdad alguno llegara a chocar contra nuestro planeta, ya que afectaría de manera global al mismo. Sin embargo, los cálculos de las trayectorias y de cada aproximación a la [[Tierra]] tienen grandes incertidumbres, debido a que los elementos orbitales (semiejes mayor y menor, distancia mínima al [[Sol]], excentricidad, entre otros) no se conocen con total precisión, de manera que cualquier predicción está sujeta a un margen de error considerable.
  
==== Asteroides centauros ====
+
De hecho, el PHA que durante los pasados años ha representado el mayor peligro, denominado 1950 DA, ya no se clasifica como tal y dejó recientemente de ser un PHA. Hasta hace poco se pensaba que existía cierta posibilidad de que impactara contra nuestro planeta el año 2880; sin embargo, el refinamiento de los elementos orbitales ha permitido que nos demos cuenta de que tal evento no ocurrirá. Otros PHA conocidos poseen probabilidades muy bajas de llegar a chocar con la [[Tierra]]. De hecho ninguno está por encima del umbral de ruido (esto es, la posibilidad no es significativa). Lo que no quiere decir que en cualquier momento un cálculo más preciso de la trayectoria de uno de ellos, lo cual requiere observaciones precisas y continuadas, o el descubrimiento de un nuevo PHA, indique que el impacto llegue a ocurrir. De ahí la importancia de los grandes proyectos que coordinen observaciones sistemáticas del cielo y el mantenimiento de bases de datos actualizadas.
  
Se denominan «asteroides centauros» a los que se encuentran en la parte exterior del [[sistema solar]] orbitando entre los grandes planetas. El asteroide (2060) Quirón orbita entre [[Saturno (planeta)|Saturno]] y [[Urano (planeta)|Urano]] (5335) Damocles entre [[Marte (planeta)|Marte]] y Urano.
+
En [[España]] existe un centro dedicado casi exclusivamente a este tema que está ubicado en el Observatorio Astronómico de La Sagra, situado en plena montaña (a una altura de 1580 m) cerca de Puebla de Don Fadrique, en la provincia de Granada, miembro de la asociación internacional Spaceguard Foundation.
  
==== Asteroides coorbitantes de la Tierra ====
+
== Exploración ==
  
Son asteroides que al acercarse a la Tierra permanecen capturados por la gravedad terrestre por algunos años y luego se alejan nuevamente. Actualmente se conocen dos cuerpos de este tipo: el [[2003]] YN107 y el [[2004]] GU9.
+
Hasta la llegada de los viajes espaciales, los objetos del cinturón de asteroides no eran más que simples puntos de luz, incluso para los más grandes telescopios, y sus formas y composición eran meramente especulativos. Los mejores telescopios terrestres y el telescopio espacial Hubble, en órbita terrestre, son capaces de resolver unos pocos detalles de las superficies de los asteroides más grandes, pero aun en este caso la mayoría de esos detalles solo son manchas borrosas. Algo más de información sobre la composición y la forma se consigue deducir de la curva de luz y de las características espectrales. El tamaño del asteroide se puede saber midiendo el tiempo que duran las ocultaciones estelares —cuando un asteroide pasa delante de una [[estrella]]— y calculando la distancia del asteroide a la [[Tierra]]. Las imágenes de radar proporcionan excelentes datos de las formas y los parámetros orbitales y rotacionales, especialmente de los asteroides cercanos a la Tierra. En cuanto a los requisitos de delta-v y propulsión, los NEO son cuerpos más accesibles que la [[Luna]].  
  
==== Método de denominación de los asteroides ====
+
=== Asteroides visitados por sondas espaciales ===
  
En principio, cuando un asteroide es descubierto recibe del «Centro de Planetas Menores» (Minor Planet Center o MPC) un nombre provisional compuesto de una clave que indica el año, el mes y orden del descubrimiento. Esta denominación consta de un número, que es el año, y de dos letras: la primera indicando la quincena en que aconteció el avistamiento y la segunda reflejando la secuencia dentro de la quincena. De este modo, [[1989]] AC (Tutatis), indica que fue descubierto en la primera quincena de [[enero]] (A) de [[1989]], y que fue el tercero (C) descubierto en ese período.
+
Las primeras imágenes en primer plano de objetos similares a los asteroides se tomaron en [[1971]] cuando la sonda espacial Mariner 9 sacó fotografías de Fobos y Deimos, los dos pequeños satélites de Marte, que son probablemente asteroides capturados. Estas imágenes, al igual que las obtenidas por las Voyager de los pequeños satélites de los gigantes gaseosos, revelaron la forma irregular de estos cuerpos.
  
Una vez que la órbita se ha establecido con la suficiente precisión como para poder predecir su futura trayectoria, se le asigna un número (no necesariamente el del orden en que fue descubierto) y, más tarde, un nombre permanente elegido por el descubridor y aprobado por un comité de la Unión Astronómica Internacional (International Astronomical Union o IAU). Inicialmente, todos los nombres con los que se bautizaba a los asteroides eran de personajes femeninos de la mitología griega y romana pero pronto se optó por formas más modernas. El primer asteroide que recibió un nombre no mitológico fue el número 125 de la serie, Liberatrix (liberadora en latín) que le fue otorgado en honor a [[Juana de Arco]], aunque también se especula con que tal nombre es un homenaje al primer presidente de la [[República Francesa]], Adolphe Thiers.
+
La sonda Galileo en ruta hacia Júpiter tomó las primeras fotografías cercanas a un asteroide el [[29 de octubre]] de [[1991]] durante el sobrevuelo del asteroide Gaspra. Posteriormente, el [[28 de marzo]] de [[1993]], hizo lo propio con Ida donde además descubrió Dáctilo, el primer satélite asteroidal confirmado. La primera sonda espacial dedicada exclusivamente a la exploración asteroidal fue la NEAR Shoemaker. Sobrevoló el [[27 de junio]] de [[1997]] Matilde y entró en órbita de Eros el [[14 de febrero]] de [[2000]] para aterrizar en su superficie un año más tarde, el [[12 de febrero]] de [[2001]]. Otros asteroides visitados por sondas de camino a sus objetivos han sido Braille por la Deep Space 1 el [[28 de julio]] de [[1999]], Annefrank por la Stardust el [[2 de noviembre]] de [[2002]], Šteins y Lutecia por la Rosetta el [[5 de septiembre]] de [[2008]] y el [[10 de julio]] de [[2010]] respectivamente y Tutatis el [[13 de diciembre]] de [[2012]] por la Chang'e 2.
  
Por su parte, el primer nombre masculino, lo recibió el número 433, Eros. Hoy en día, las denominaciones son mucho menos restringidas y van desde nombres de ciudades y países como [[Barcelona]] (945), [[Hiroshima]] (2247), [[Austria]] (132), [[China]] (1125) y [[Uganda]] (1279) hasta nombres de personas famosas como Zamenhof (1462) o Piazzia (1000) en honor a Piazzi, personajes de ficción como Mr. Spock (2309) y otros conceptos como razas, géneros de animales y plantas, etc.
+
El [[13 de junio]] de [[2010]] la sonda Hayabusa trajo a la [[Tierra]] material del asteroide Itokawa, lo que permitió establecer un vínculo entre los meteoritos condríticos y los asteroides de tipo S. Esta fue la primera vez que una misión espacial traía a la Tierra materiales de un asteroide. Anteriormente, los meteoritos habían sido la única fuente de muestras procedentes de los asteroides.
  
Sin embargo se ha acordado que hay ciertos nombres y temas que están prohibidos: por ejemplo el de militares, personajes o lugares de la [[II Guerra Mundial]] ya que la referencia a los mismos puede ser molesta o incluso insultante para los demás. Actualmente con la propuesta del nombre se acompaña una corta nota que informa a la comunidad internacional del por qué de dicha denominación: p. ej. «Snoopy: nombre de un personaje de ficción, concretamente un perro blanco de orejas colgantes, que acompaña a Charlie Brown y suele reflexionar sobre el tejado de la caseta en la que vive».
+
La sonda Dawn fue lanzada el [[27 de septiembre]] de [[2007]] con destino Vesta y Ceres. Estuvo en órbita alrededor de Vesta entre el [[16 de julio]] de [[2011]] y el [[5 de septiembre]] de [[2012]]. En este periodo descubrió un enorme cráter en el hemisferio sur cuyo pico central es una de las montañas conocidas más altas del [[sistema solar]]. Tras abandonar Vesta, emprendió viaje a Ceres. El [[6 de marzo]] de [[2015]] entró en órbita alrededor del planeta enano. Está previsto que la misión primaria concluya en julio del mismo año.  
  
Las efemérides de los asteroides se recogen anualmente en un volumen titulado Ephemerides of Minor Planets, que publica el Institute of Theoretical Astronomy, Russian Academy of Sciences, Naberezhnaya Kutuzova 10, 191187 [[San Petersburgo]], [[Rusia]].
+
=== Misiones en curso y previstas ===
 +
 
 +
La Agencia Japonesa de Exploración Aeroespacial (JAXA) lanzó el [[3 de diciembre]] de [[2014]] la sonda Hayabusa 2 con el objetivo de traer a la [[Tierra]] una muestra de material del asteroide Ryugu, un objeto perteneciente a la clase de los asteroides de tipo C y considerado por el Minor Planet Center como un asteroide potencialmente peligroso. Está previsto que alcance el asteroide en [[2018]], que abandone la órbita asteroidal un año más tarde y que retorne a la [[Tierra]] en [[2020]]. Esta será la segunda vez que una sonda espacial retorna con muestras materiales de un asteroide.
 +
 
 +
A finales de [[2016]] está previsto el lanzamiento de la sonda OSIRIS-REx de la NASA con destino al asteroide Bennu, perteneciente al grupo de los asteroides Apolo. El objetivo de la misión es ampliar los conocimientos científicos en formación planetaria y origen de la vida, así como traer material superficial para mejorar la comprensión de los asteroides que podrían impactar contra la Tierra. La llegada de la sonda al asteroide y su inserción en órbita están previstas para finales de [[2018]] y el regreso a la Tierra para [[2023]]. Esta será la tercera vez que una sonda espacial retorna con muestras materiales de un asteroide.
  
== Curiosidades ==
+
== Proceso de denominación de los asteroides ==
  
Algunos asteroides tienen satélites a su alrededor como (243) Ida y su satélite Dactyl. El 10 de agosto de 2005 se anunció el descubrimiento de que el asteroide (87) Silvia tiene dos satélites girando a su alrededor, Rómulo y Remo. Rómulo, la primera luna, se descubrió el 18 de febrero de 2001 en el telescopio W. M. Keck II de 10 metros en Mauna Kea, tiene 18 km de diámetro y su órbita, a una distancia de 1370 km de Silvia, tarda en completarse 87,6 horas. Remo, la segunda luna, tiene 7 km de diámetro y gira a una distancia de 710 km, tardando 33 horas en completar una órbita alrededor de Silvia.
+
En principio, cuando un asteroide es descubierto recibe del «Centro de Planetas Menores» (Minor Planet Center (MPC) un nombre provisional compuesto de una clave que indica el año, el mes y orden del descubrimiento. Esta denominación consta de un número, que es el año, y de dos letras: la primera indicando la quincena en que aconteció el avistamiento y la segunda reflejando la secuencia dentro de la quincena. De este modo, 1989 AC indica que fue descubierto en la primera quincena de enero (A) de 1989, y que fue el tercero (C) descubierto en ese período.
  
== Riesgo de Impacto con la Tierra ==
+
Una vez que la órbita se ha establecido con la suficiente precisión como para poder predecir su futura trayectoria, se le asigna un número (no necesariamente el del orden en que fue descubierto) y, más tarde, un nombre permanente elegido por el descubridor y aprobado por un comité de la [[Unión Astronómica Internacional]] (International Astronomical Union (IAU). Inicialmente, todos los nombres con los que se bautizaba a los asteroides eran de personajes femeninos de la mitología griega y romana pero pronto se optó por formas más modernas. El primer asteroide que recibió un nombre no mitológico fue el número 125 de la serie, Liberatrix (liberadora en latín) que le fue otorgado en honor a Juana de Arco, aunque también se especula con que tal nombre es un homenaje al primer presidente de la República Francesa, Adolphe Thiers. Por su parte, el primer nombre masculino, lo recibió el número 433, Eros. Hoy en día, las denominaciones son mucho menos restringidas y van desde nombres de ciudades y países como Barcelona (945), Hiroshima (2247), Austria (132), China (1125) y Uganda (1279) hasta nombres de personas famosas como Zamenhof (1462) o Piazzia (1000) en honor a Piazzi, personajes de ficción como Mr. Spock (2309) y otros conceptos como razas, género géneros de animales y plantas, etc. Sin embargo se ha acordado que hay ciertos nombres y temas que están prohibidos: por ejemplo el de militares, personajes o lugares de la [[Segunda Guerra Mundial]] ya que la referencia a los mismos puede ser molesta o incluso insultante para los demás. Actualmente con la propuesta del nombre se acompaña una corta nota que informa a la comunidad internacional del porqué de dicha denominación: p. ej. «Snoopy: nombre de un personaje de ficción, concretamente un perro blanco de orejas colgantes, que acompaña a Charlie Brown y suele reflexionar sobre el tejado de la caseta en la que vive».
  
Los asteroides cercanos a la [[Tierra]] (''near earth asteroids'' o ''NEA'') se dividen en tres categorías: atenas, apolos y amores, siguiendo el nombre de cada prototipo (Atón, [[Apolo (asteroide)|Apolo]] y Amor). Bajo ciertas condiciones sería posible un impacto con nuestro planeta. Si además consideramos a los cometas, generalmente menos masivos pero igualmente con gran poder destructor, el grupo que los incluye a todos se llama Near Earth Objects (NEO).
+
Las efemérides de los asteroides se recogen anualmente en un volumen titulado Ephemerides of Minor Planets, que publica el Institute of Theoretical Astronomy, Russian Academy of Sciences, Naberezhnaya Kutuzova 10, 191187 [[San Petersburgo]], [[Rusia]].
  
Actualmente existen unos 4.000 objetos catalogados como NEO, según «NeoDys» (Near Earth Objects - Dynamic Site), un proyecto de la Universidad de Pisa que proporciona información actualizada de este tipo de astros. Finalmente, si un NEA se aproxima a menos de 0,05 unidades astronómicas (7 millones y medio de kilómetros) a la [[Tierra]], se le denomina PHA (asteroide potencialmente peligroso, por sus siglas en inglés). De ellos hay clasificados unos 800 en la actualidad y son los que representan un peligro para la civilización si en verdad alguno llegara a chocar contra nuestro planeta, ya que afectaría de manera global al mismo. Sin embargo, los cálculos de las trayectorias y de cada aproximación a la Tierra tienen grandes incertidumbres, debido a que los elementos orbitales (semiejes mayor y menor, distancia mínima al Sol, excentricidad, entre otros) no se conocen con total precisión, de manera que cualquier predicción está sujeta a un margen de error considerable.
+
En ocasiones una serie de asteroides numerados consecutivamente se nombran siguiendo un patrón o en recuerdo de un acontecimiento. Así, las iniciales de los numerados del (1227) al (1234) forman el apellido de Gustav Stracke y las del (8585) al (8600) la frase latina «per aspera ad astra». Los asteroides numerados del (3350) al (3356) y los del (51823) al (51829) se nombraron en recuerdo de los astronautas fallecidos en los accidentes del Challenger y el Columbia respectivamente.
  
De hecho, el PHA que durante los pasados años ha representado el mayor peligro, denominado [[1950]] DA, ya no se clasifica como tal y dejó recientemente de ser un PHA. Hasta hace poco se pensaba que existía cierta posibilidad de que impactara contra nuestro planeta el año 2880; sin embargo, el refinamiento de los elementos orbitales ha permitido que nos demos cuenta de que tal evento no ocurrirá. Otros PHA conocidos poseen probabilidades muy bajas de llegar a chocar con la Tierra. De hecho ninguno está por encima de la barrera del sonido (esto es, la posibilidad no es significativa). Lo que no quiere decir que en cualquier momento un cálculo más preciso de la trayectoria de uno de ellos, lo cual requiere observaciones precisas y continuadas, o el descubrimiento de un nuevo PHA, indique que el impacto llegue a ocurrir. De ahí la importancia de los grandes proyectos que coordinen observaciones sistemáticas del cielo y el mantenimiento de bases de datos actualizadas.
+
== Bibliografías ==
  
En [[España]] existe un centro dedicado casi exclusivamente a este tema que está ubicado en el Observatorio Astronómico de La Sagra, situado en plena montaña (a una altura de 1580 m) cerca de Puebla de Don Fadrique, en la provincia de [[Granada]], miembro de la asociación internacional Spaceward.
+
*Real Academia Española y Asociación de Academias de la Lengua Española (2014). «Asteroide». Diccionario de la lengua española (23.ª edición). Madrid: Espasa. ISBN 978-84-670-4189-7.
 +
*Foderà Serio, G.; Manara, A.; Sicoli, P. (2002). «Giuseppe Piazzi and the Discovery of Ceres». En Bottke, William; Cellino, Alberto; Paolicchi, Paolo et al. Asteroids III (en inglés) (1ª edición). The University of Arizona Press. pp. 17-24. ISBN 978-0-8165-2281-1.
 +
*Hoskin, Michael. «Bode's Law and the Discovery of Ceres». Physics of Solar and Stellar Coronae: G.S. Vaiana Memorial Symposium, Palermo, Italy, 22-26 June 1992 (en inglés).
 +
*Bendjoya, Ph.; Zapala, V. (2002). «Asteroid Family Identification». Asteroids III (en inglés) (1ª edición). The University of Arizona Press. pp. 613-618. ISBN 978-0-8165-2281-1.
 +
*Binzel, Richard P.; Lupishko, Dmitrij F.; Di Martino, Mario; Whiteley, Robert J.; Hahn, Gerhard J. «Physical Properties of Near-Earth Objects» (en inglés).
 +
*Morbidelli, A.; Bottke Jr., W. F.; Froeschlé, Ch.; Michel, P. «Origin and Evolution of Near-Earth Objects» (en inglés).
  
 
== Fuentes ==
 
== Fuentes ==
  
*[http://es.wikipedia.org/wiki/Asteroide Asteroide].
+
*[https://spaceplace.nasa.gov/asteroid/sp/ NASA Space Place]
*[http://www.xtec.es/~rmolins1/solar/es/asteroid.htm Asteroides. Sistema solar].
+
*[https://concepto.de/asteroide/ Diccionario online de conceptos con miles de definiciones]
*[http://www.astrogea.org/asteroides/los_asteroides.htm Los asteroides].
+
*[https://www.geoenciclopedia.com/asteroide/ GeoEnciclopedia]
*[http://astronomiamoderna.com.ar/Losasteroides.html Astronomía moderna].
+
*[http://www.juventudtecnica.cu/contenido/asteroides-sus-caracteristicas-y-donde-encontrarlos/ Revista Juventud Técnica – Cuba]  
 +
*[http://fcaglp.fcaglp.unlp.edu.ar/extension/preguntas/asteroides.html/ Facultad de Ciencias Astronómicas y Geofísicas de la Universidad Nacional de La Plata – Argentina]  
 +
*[https://www.euston96.com/asteroide/ Euston96 – Tu enciclopedia en línea]
  
[[Categoría: Astronomía]]
+
[[Category:Geografía]]
 +
[[Category:Asteroides]]
 +
[[Categoría:Artículos certificados]]

última versión al 11:33 4 ago 2021


Asteroide
Información sobre la plantilla
Asteroide.jpg
Concepto:Cuerpo rocoso, carbonáceo o metálico más pequeño que un planeta y mayor que un meteoroide, que gira alrededor del Sol en una órbita interior a la de Neptuno.

Asteroide. Cuerpo rocoso, carbonáceo o metálico más pequeño que un planeta y mayor que un meteoroide, que gira alrededor del Sol en una órbita interior a la de Neptuno. Se clasifican en función de su ubicación, composición o agrupamiento. Para la ubicación se toma como referencia la posición relativa de estos cuerpos respecto al Sol y los planetas. Para la composición se usan los datos extraídos de los espectros de absorción. Los agrupamientos se basan en los valores nominales similares del semieje mayor, la excentricidad y la inclinación de la órbita. Debido a su diminuto tamaño y gran distancia de la Tierra, casi todo lo que sabemos de ellos procede de medidas astrométricas y radiométricas, curvas de luz y espectros de absorción.

Etimología

«Asteroide» es una palabra de origen griego, ἀστεροειδής, que se puede traducir al español como «de forma estelar». Hace alusión al aspecto que ofrecen estos cuerpos vistos a través de un telescopio. Fue Herschel quien el 6 de mayo de 1802 propuso ante la Royal Society de Londres que tanto Ceres como Palas, únicos asteroides descubiertos hasta ese momento, eran un nuevo tipo de cuerpos, a los que llamó asteroides. Sin embargo, la mayoría de los astrónomos de la época rechazó la propuesta de Herschel por considerarla indigna, ridícula o sin precedentes, y continuaron considerándolos planetas. Giuseppe Piazzi, descubridor de Ceres, empleó el término planetoide y solo Heinrich Olbers secundó a Herschel. «Asteroide» no empezó a generalizarse hasta principios del siglo XX.

En 2013, Clifford Cunningham, en un encuentro de la división planetaria de la Sociedad Astronómica Americana, argumentó que la propuesta original procedía del especialista en griego Charles Burney. Según Cunningham, Herschel pidió sugerencias a varios amigos entre los que estaban Joseph Banks y Charles Burney. A su vez, Banks escribió a Stephen Weston, quien propuso el nombre «aorate», y Burney escribió a su hijo proponiendo nombres como «stellula» en clara alusión al diminuto tamaño de estos cuerpos.

Historia

Durante siglos, astrónomos, físicos y matemáticos se preguntaron por el enorme vacío que había entre las órbitas de Marte y Júpiter, pero no fue hasta el siglo XIX que Piazzi dio una primera respuesta al descubrir Ceres. En el siglo siguiente, los astrónomos ya conocían miles de asteroides, principalmente agrupados en el cinturón de asteroides. Con la llegada de las búsquedas automatizadas a finales del siglo XX y principios del XXI, el número de asteroides conocido se disparó. En 2012, había más de seiscientas mil órbitas computadas.

El primer investigador que se ocupó del hueco que había entre las órbitas de Marte y Júpiter fue Johannes Kepler. Kepler formuló la hipótesis de que debía existir un planeta desconocido en ese espacio, aunque agregó que quizá no fuese suficiente con uno.

Posteriormente otros científicos retomaron la cuestión. Isaac Newton opinaba que tanto Júpiter como Saturno habían sido puestos por influencia divina en el exterior del sistema solar para no perturbar las órbitas de los planetas interiores. El filósofo Immanuel Kant dijo que el espacio vacío estaba en proporción a la masa de Júpiter. Johann Heinrich Lambert pensaba que el hueco era quizá el resultado de la expulsión de algún hipotético planeta debido a la influencia gravitatoria de Júpiter y Saturno.

Ya en el siglo XVIII varios astrónomos estaban dispuestos a creer en la existencia de múltiples planetas desconocidos en el sistema solar. Sin embargo, fue Johann Daniel Titius, en 1766, el primero en aportar la explicación para la distancia entre las órbitas de Marte y Júpiter que con el tiempo se conocería como ley de Titius-Bode. La relación numérica atrajo la atención de Johann Elert Bode, quien no dudó de su validez y la publicó en 1772. El descubrimiento de Urano por William Herschel en 1781 a la distancia que vaticinaba la ley fue la confirmación definitiva de su fiabilidad y reforzó la creencia en la existencia de un planeta entre Marte y Júpiter.

Uno de los astrónomos que más interés se tomó en la localización del planeta fue el barón Franz Xaver von Zach, director del observatorio de Seeberg. Zach seleccionó la región zodiacal, preparó un mapa de estrellas que le permitiera determinar la presencia de nuevos objetos y calculó incluso una hipotética órbita para el desconocido planeta. En 1800, tras estériles resultados, convenció a otros astrónomos para que le ayudaran en la búsqueda. El 20 de septiembre de 1800 se constituyó la Vereinigte Astronomische Gesellschaft, conocida como Sociedad de Lilienthal, con el propósito de cartografiar la región del Zodiaco hasta las más débiles estrellas. Entre los miembros fundadores estaban Karl Ludwig Harding y Olbers, quienes más adelante descubrirían uno y dos asteroides respectivamente.

Para lograr sus fines, dividieron el Zodiaco en veinticuatro partes iguales y escogieron a otros astrónomos hasta completar la cifra de las divisiones. A estos astrónomos se les conoce como la policía celeste, aunque varios no llegaron a participar activamente en la búsqueda. Entre los seleccionados estaban Herschel y Piazzi, quien no recibió una invitación formal para unirse a la empresa, aunque a la postre fue el descubridor del nuevo planeta.

La noche del 1 de enero de 1801, mientras trabajaba en la composición de un catálogo de estrellas, Piazzi encontró un objeto en la constelación del Toro. Observó, en las noches sucesivas, que el objeto se movía sobre el fondo estelar. Al principio pensó que se trataba de un error, pero luego llegó a la conclusión de que había descubierto un cometa. El 4 de enero anunció a la prensa el hallazgo, gracias a lo cual varios astrónomos europeos, entre ellos Joseph Lalande quien pidió a Piazzi que le enviara sus observaciones, supieron la noticia a finales de febrero. Más adelante compartió sus observaciones por sendas cartas con Bode y Barnaba Oriani en las que mencionaba la ausencia de nebulosidad alrededor del objeto.

Con los datos que le aportaba Piazzi en su carta, Bode calculó una órbita preliminar. El 26 de marzo comunicó en la Academia Prusiana de las Ciencias que la órbita era consistente con el planeta que faltaba entre Marte y Júpiter y posteriormente informó a Zach para que lo publicase en Monatliche Correspondenz. Llegó incluso a proponer el nombre de Juno para el nuevo planeta. Piazzi ya había bautizado su descubrimiento como Cerere Ferdinandea en honor a la diosa patrona de Sicilia y al rey Fernando. A la larga, la comunidad astronómica aceptó el nombre de Ceres para el nuevo objeto.

Lalande pasó las observaciones de Piazzi a Johann Karl Burckhardt quien calculó una órbita elíptica con ellas y envió sus resultados a Zach a primeros de junio. A finales del mismo mes, la comunidad astronómica estaba convencida de que Ceres era un nuevo planeta. Sin embargo, la tardanza de Piazzi en proporcionar los datos de sus observaciones frustraron los intentos de recuperarlo. Zach, en carta enviada a Oriani el 6 de julio, criticó a Piazzi por haber mantenido en secreto su trabajo. Para finales de agosto muchos astrónomos, en especial en Francia, dudaban de la existencia del objeto.

En septiembre se publicaron todas las observaciones de Piazzi. Carl Friedrich Gauss calculó una nueva órbita elíptica que mejoraba mucho la anteriormente obtenida por Burckhardt, quien en realidad trabajó con pocas observaciones. El 7 de diciembre Zach llegó a ver el planeta enano, pero el mal tiempo de los siguientes días le impidió continuar con sus observaciones. Finalmente, el 31 de diciembre Zach y el 2 de enero Olbers observaron independientemente Ceres en la posición predicha por los cálculos de Gauss, con lo que se confirmaba la existencia del objeto.

Unos meses después de la recuperación de Ceres, el 28 de marzo de 1802, Olbers encontraba otro objeto de características parecidas, pero con inclinación y excentricidad mayores. Dos días después estaba seguro de que se hallaba ante un nuevo planeta, al que denominó Palas, pues observó que se desplazaba respecto a las estrellas de fondo. El 4 de abril, Zach confirmó el descubrimiento de Olbers y extendió la noticia que fue enseguida aceptada por la mayoría de astrónomos europeos. Para tratar de casar la ley de Bode-Titius, cuyo fundamento físico, aunque desconocido, no había sido puesto en duda, con la presencia de dos cuerpos en lugar de uno, Olbers propuso que Ceres y Palas eran trozos de un planeta mayor que se había fragmentado por fuerzas internas o por un impacto.

La consecuencia inmediata de la teoría de Olbers fue que podrían existir más objetos entre las órbitas de Marte y Júpiter aún por descubrir. Así, Harding, tras constantes observaciones de la región del firmamento donde se cruzaban las órbitas de Ceres y Palas, terminó por encontrar a Juno el 1 de septiembre de 1804. Días después, Hofrath Huth, en una carta enviada a Bode, aventuraba que no sería el último descubrimiento y que estos cuerpos podrían haberse originado a la vez que el resto de planetas y de la misma forma, en contra de lo que postulaba Olbers.

Casi tres años después, Olbers descubrió un cuarto asteroide, Vesta, en la misma región del cielo y que ha resultado ser el más brillante. El nombre fue propuesto por Gauss. Estos cuatro descubrimientos reforzaron la teoría olbersiana, a pesar de ser objetivamente pocos. Sin embargo, ya en 1812, Joseph-Louis de Lagrange la cuestionaba, afirmando que era extraordinaria, pero improbable.

Tras los primeros descubrimientos, pasaron cerca de cuarenta años hasta que Karl Ludwig Hencke encontró el quinto tras cinco lustros de intensa búsqueda. Este largo lapso de tiempo se puede explicar por tres causas principales. En primer lugar, la mayoría de astrónomos, influidos por la teoría de Olbers, hicieron sus búsquedas en la misma región del espacio en las que se descubrieron los primeros cuerpos. En segundo, la búsqueda sistemática de nuevos planetas no fue considerada una prioridad astronómica, puesto que los primeros cuerpos se encontraron por accidente. Por último, la ausencia de buenas cartas celestes, donde se mostrase de forma inequívoca la posición de las estrellas, desalentó a los astrónomos porque no se tenía certeza de hallarse ante un nuevo planeta o una estrella.

Con el acceso a un número cada vez mayor de cartas celestes, los astrónomos dispusieron de medios para emprender la tarea con suficientes garantías. Así, en 1857 ya se habían descubierto cincuenta y el número cien se catalogó en 1868. El 22 de diciembre de 1891, Maximilian Franz Wolf descubrió Brucia mediante la astrofotografía, técnica que aceleró el aumento de la nómina de asteroides. Para 1923 ya había mil asteroides catalogados y en 1985 se registró el número tres mil. A finales del siglo XX, el refinamiento de las técnicas de observación y el empleo de programas automatizados, como Linear y Spacewatch, incrementó exponencialmente la cantidad de asteroides conocidos. En 1999 eran diez mil; en 2002, cincuenta mil; el número cien mil se catalogó en 2005; para 2014 ya eran cuatrocientos mil los cuerpos catalogados. Algunas estimaciones permiten suponer que haya más de un millón de asteroides con tamaños superiores a un kilómetro.

Mientras aumentaba el número de asteroides, los astrónomos se cuestionaban su origen. François Arago observó que las órbitas no se intersecaban en la misma región del espacio, lo que ponía en duda la teoría de Olbers, aunque admitió que el entrelazamiento de las órbitas sugería algún tipo de relación. Más adelante, en 1867, Daniel Kirkwood postuló que los asteroides se habían originado a partir de un anillo de materia que no llegó a formar un planeta debido a la influencia gravitatoria de Júpiter. Esta teoría terminó por convertirse en la dominante en los círculos astronómicos. El mismo Kirkwood encontró que no existían asteroides cuyos periodos de traslación tuviesen una relación de números enteros sencillos con Júpiter por lo que se producían huecos en la distribución de los asteroides. En 1918, Kiyotsugu Hirayama encontró similitudes en los parámetros orbitales de varios asteroides, concluyó que tenían un origen común, probablemente tras colisiones catastróficas, y llamó a estas agrupaciones familias de asteroides.

Características generales

Los asteroides son cuerpos menores, rocosos y que orbitan alrededor del Sol a distancias inferiores a la de Neptuno. La mayoría está situada entre las órbitas de Marte y Júpiter. Tienen tamaños reducidos y formas irregulares, salvo algunos de mayor tamaño como Palas, Vesta o Higía que tienen formas ligeramente redondeadas. Se originaron a partir de la colisión de cuerpos mayores que no llegaron a conformar un planeta por la influencia gravitatoria de Júpiter.

Formas, tamaños y distribución de masas

El tamaño de los asteroides varía entre los 1000 km del más grande hasta rocas de apenas una decena de metros. Los tres más grandes son similares a planetas en miniatura: Son más o menos esféricos, su interior está parcialmente diferenciado y se cree que son protoplanetas. Sin embargo, la gran mayoría son mucho más pequeños, de forma irregular y, o bien son restos supervivientes de los primitivos planetésimos, o bien fragmentos de cuerpos más grandes producidos tras colisiones catastróficas.

Ceres es, con diferencia, el más grande. Los siguientes son Palas y Vesta, ambos con diámetros poco mayores de 500 km. Vesta, además, es el único asteroide del cinturón principal que, en ocasiones, puede verse a simple vista. En contadas ocasiones, asteroides cercanos a la Tierra como Apofis pueden verse con el ojo desnudo.

La masa de todos los asteroides del cinturón principal está estimada entre 2,8 y 3,2×1021 kg; o, lo que es igual, un 4 % de la masa de la Luna. Ceres, con 9,5×1020 kg, representa la tercera parte del total. Junto a Vesta (9 %), Palas (7 %) e Higía (3 %) alcanza a más de la mitad de la masa. Los siguientes tres asteroides Davida (1,2 %), Interamnia (1 %) y Europa (0,9 %) solo añaden otro 3 % a la masa total. A partir de aquí, el número de asteroides aumenta rápidamente al tiempo que sus masas individuales disminuyen.

El número de asteroides disminuye notablemente conforme aumenta el tamaño. Aunque esto sigue una distribución de potencias, hay saltos para los 5 y 100 km donde se encuentran más asteroides de lo esperado según una distribución logarítmica.

Distribución en el sistema solar

Asteroides cercanos a la Tierra

Los asteroides cercanos a la Tierra (NEA, acrónimo inglés de Near-Earth Asteroids) son todos aquellos objetos astronómicos que tienen una órbita cercana a la Tierra y no son cometas. Hay más de 10 000 asteroides conocidos con estas características con diámetros que varían desde un metro a los aproximadamente 32 km de Ganimedes. Los que superan el kilómetro se acercan a los 1000. Eros fue el primer asteroide de este grupo en ser descubierto.

Parte de estos cuerpos son residuos de cometas extinguidos. Otros NEA se cree que se originan en el cinturón de asteroides donde la influencia gravitatoria de Júpiter expulsa al sistema solar interior a los asteroides que caen en los huecos de Kirkwood. El efecto Yarkovsky contribuye a que el suministro de asteroides a las resonancias jovianas sea continuo.

La duración estimada de los NEA es de unos pocos millones de años. Su composición es comparable a la de los asteroides del cinturón principal o a la de los cometas de periodo corto.

Los NEA se dividen en tres grupos principales atendiendo al semieje mayor, perihelio y afelio.

Asteroides Atón

Son aquellos que tienen un semieje mayor inferior a 1 ua. El asteroide Atón da nombre al grupo. Si además no cruzan la órbita terrestre se les denomina asteroides Apohele, asteroides Atira u objetos interiores a la Tierra. Algunos asteroides de este grupo, como Cruithne, tienen órbitas similares a la terrestre.

Asteroides Apolo

Son aquellos que tienen un semieje mayor superior a 1 ua y cruzan la órbita de la Tierra. El asteroide Apolo da nombre al grupo.

Asteroides Amor

Son aquellos cuyo perihelio es mayor que el afelio terrestre e inferior a 1,3 ua. El asteroide Amor.

Asteroides potencialmente peligrosos

Se llaman asteroides potencialmente peligrosos (PHA, acrónimo en inglés de Potentially Hazardous Asteroids) a aquellos que se aproximan a la Tierra a menos de 0,05 ua y tienen una magnitud absoluta inferior a 22. El más grande de estos cuerpos es Toutatis.

Asteroides del cinturón principal

El cinturón de asteroides es una región del sistema solar comprendida entre las órbitas de Marte y Júpiter. La mayor parte de los asteroides forma parte de él, a distancias comprendidas entre 2 y 3,5 ua. Más de la mitad de la masa la constituyen Ceres, Palas, Vesta, Juno e Higía, aunque la masa total del cinturón apenas supone un 4 % de la masa de la Luna.

El cinturón de asteroides se formó en la nebulosa protosolar junto con el resto del sistema solar. Los fragmentos de material contenidos en la región del cinturón habrían podido formar un planeta, pero las perturbaciones gravitacionales de Júpiter, el planeta más masivo, produjeron que estos fragmentos colisionaran entre sí a grandes velocidades y no pudieran agruparse, resultando en el residuo rocoso que se observa en la actualidad. Una consecuencia de estas perturbaciones son los huecos de Kirkwood, zonas donde no se encuentran asteroides debido a resonancias orbitales con Júpiter que provocan que sus órbitas se tornen inestables.

El cinturón de asteroides está dividido en varias regiones según los límites que marcan las resonancias jovianas. Sin embargo, no todos los autores se ponen de acuerdo. Para la mayoría se divide en interior, exterior y medio o principal propiamente dicho, cuyos límites son las resonancias 4:1 y 2:1. A su vez, el cinturón principal se divide en tres zonas designadas con números romanos y limitadas por las resonancias 3:1 y 5:2. Una última resonancia, 7:3, marca una interrupción en la zona III. Algunos asteroides tienen órbitas tan excéntricas que llegan a cruzar la de Marte (en inglés, Mars-crossing asteroids).

Hungarias

Los hungarias o asteroides del grupo de Hungaria son cuerpos menores situados entre 1,78 y 2,06 ua, con inclinaciones orbitales elevadas y excentricidad menor de 0,18. Son el resultado de una colisión catastrófica producida hace menos de quinientos millones de años y cuyo fragmento mayor es Hungaria, que da nombre al grupo, la región y la familia. La mayoría de los cuerpos de este grupo pertenecen a la familia asteroidal de Hungaria. Son objetos muy brillantes, con magnitudes absolutas inferiores a 18 y pertenecen a los tipos espectrales E y X.

Hildas

Los hildas o asteroides del grupo de Hilda son cuerpos menores que tienen resonancia orbital 3:2 con Júpiter y un semieje mayor comprendido entre 3,8 y 4,1 ua aproximadamente. Los miembros centrales del grupo tienen una alta estabilidad orbital y pertenecen a los tipos espectrales D y P. La mayoría está agrupada en las familias de Hilda y de Schubart.

Asteroides troyanos

Los asteroides troyanos son asteroides que comparten órbita con un planeta. Se distribuyen en dos regiones alargadas y curvas alrededor de los puntos estables de Lagrange L4 y L5, situados 60° delante y detrás del planeta respectivamente. El nombre troyano se debe a que se estableció la convención de bautizar a los asteroides que ocupaban dichos puntos de la órbita de Júpiter con el nombre de los personajes de la guerra de Troya.

Tradicionalmente el término se ha referido a los asteroides troyanos de Júpiter, los primeros en ser descubiertos y los más numerosos hasta la fecha con diferencia. Sin embargo, con el descubrimiento de asteroides en los puntos de Lagrange de otros planetas del sistema solar, el término se ha extendido para englobarlos a todos. Solo Saturno y los planetas interiores a la Tierra no tienen asteroides troyanos confirmados. En el caso de los troyanos de Júpiter, los que anteceden al planeta pertenecen al grupo del campo griego y los que siguen al planeta al grupo del campo troyano.

Existen dos teorías para explicar su origen y ubicación. La primera indica que se formaron durante la última etapa de acreción planetaria en la misma región en la que se encuentran. La segunda establece que, durante la migración planetaria, el primitivo cinturón de Kuiper se desestabilizó y millones de objetos fueron expulsados al interior del sistema solar donde se incorporaron a los puntos de Lagrange de los planetas gaseosos.

Aquiles, el 22 de febrero de 1906 en el punto L4 de la órbita joviana, fue el primer troyano en ser descubierto. Hubo de transcurrir casi un siglo para descubrir troyanos de otros planetas. El 20 de junio de 1990 se encontró Eureka, primer troyano de Marte, y el 21 de agosto de 2001 se halló a 2001 QR322, el primero de Neptuno. Más tarde se descubrieron sendos troyanos en las órbitas de la Tierra y Urano.

Centauros

Se denominan centauros a un grupo de cuerpos menores que se encuentran en la parte exterior del sistema solar orbitando entre los grandes planetas. Quirón orbita entre Saturno y Urano, Damocles entre Marte y Urano. Estos cuerpos tienen órbitas inestables, muy influidas gravitatoriamente por la gran masa de Júpiter.

Clasificación según tipos espectrales =

El estudio de la luz reflejada por los asteroides proporciona indicios de sus composiciones superficiales. El análisis de los espectros de absorción de cientos de asteroides ha permitido clasificarlos en diferentes tipos atendiendo a diversos criterios, siendo los principales tipos «S», «C», «M», «V» y «D». Sin embargo, distintos materiales pueden tener similiares espectros de absorción que, a su vez, pueden estar afectados por el estado de la superficie: si es porosa o compacta; si las rocas están más o menos fragmentadas; si está cubierta de polvo; o si ha sufrido una larga exposición a las radiaciones solar y cósmica. Los principales modelos de clasificación espectral son Tholen y SMASS.

Tipo espectral S

Los asteroides del tipo S representan alrededor del 17 % de los asteroides conocidos y tienen un albedo promedio de 0,14. Contienen metales en su composición y son formados fundamentalmente por silicio. Abundan en la parte interna del Cinturón.

Tipo espectral C

Los asteroides del tipo C tienen un albedo menor que 0,04 y constituyen más de la mitad de los asteroides conocidos. Son extremadamente oscuros y semejantes a meteoritos. Contienen rocas con un elevado porcentaje de carbono.

Tipo espectral M

Los asteroides del tipo M son brillantes (albedos entre 0,10 y 0,18), ricos en metales (principalmente níquel y hierro) y parecen proceder del núcleo de asteroides diferenciados.

Tipo espectral V

Estos asteroides, también llamados vestoides, son objetos astronómicos cuyo espectro es muy similar al de Vesta, el más grande con diferencia. La mayoría tiene valores de excentricidad e inclinación de la órbita parecidos a los de Vesta y un rango del semieje mayor entre 2,18 y 2,5 ua (hueco de Kirkwood 3:1). Esto permite suponer un origen común tras un gran impacto sobre Vesta. Son relativamente brillantes y en composición están equiparados a los asteroides del tipo S, pero contienen más piroxeno. Están relacionados con los meteoritos HED.

Tipo espectral D

Los asteroides del tipo D tienen un albedo muy bajo (comprendido entre 0,02 y 0,05). Son muy rojos en longitudes de onda largas, debido quizás a la presencia de materiales con gran cantidad de carbono. Son muy raros en el cinturón principal y se les encuentra con mayor frecuencia en distancias superiores a 3,3 ua del Sol, donde su período orbital es del orden de la mitad del de Júpiter; es decir, están en las proximidades de la resonancia 2:1.

Riesgo de impacto con la Tierra

Los Asteroides Cercanos a la Tierra (Near Earth Asteroids o NEA) se dividen en tres categorías: Atones, Apolos y Amores, siguiendo el nombre de cada prototipo (Atón, Apolo y Amor). Bajo ciertas condiciones sería posible un impacto con nuestro planeta. Si además consideramos a los cometas, generalmente menos masivos pero igualmente con gran poder destructor, el grupo que los incluye a todos se llama Objetos Cercanos a la Tierra, en inglés Near Earth Objects (NEO).

Actualmente existen unos 4000 objetos catalogados como NEO, según «NeoDys» (Near Earth Objects - Dynamic Site), un proyecto de la Universidad de Pisa que proporciona información actualizada de este tipo de astros. Finalmente, si un NEA se aproxima a menos de 0,05 unidades astronómicas (7 millones y medio de kilómetros) de la Tierra, se le denomina PHA (asteroide potencialmente peligroso, por sus siglas en inglés). De ellos hay clasificados unos 800 en la actualidad y son los que representan un peligro para la civilización si en verdad alguno llegara a chocar contra nuestro planeta, ya que afectaría de manera global al mismo. Sin embargo, los cálculos de las trayectorias y de cada aproximación a la Tierra tienen grandes incertidumbres, debido a que los elementos orbitales (semiejes mayor y menor, distancia mínima al Sol, excentricidad, entre otros) no se conocen con total precisión, de manera que cualquier predicción está sujeta a un margen de error considerable.

De hecho, el PHA que durante los pasados años ha representado el mayor peligro, denominado 1950 DA, ya no se clasifica como tal y dejó recientemente de ser un PHA. Hasta hace poco se pensaba que existía cierta posibilidad de que impactara contra nuestro planeta el año 2880; sin embargo, el refinamiento de los elementos orbitales ha permitido que nos demos cuenta de que tal evento no ocurrirá. Otros PHA conocidos poseen probabilidades muy bajas de llegar a chocar con la Tierra. De hecho ninguno está por encima del umbral de ruido (esto es, la posibilidad no es significativa). Lo que no quiere decir que en cualquier momento un cálculo más preciso de la trayectoria de uno de ellos, lo cual requiere observaciones precisas y continuadas, o el descubrimiento de un nuevo PHA, indique que el impacto llegue a ocurrir. De ahí la importancia de los grandes proyectos que coordinen observaciones sistemáticas del cielo y el mantenimiento de bases de datos actualizadas.

En España existe un centro dedicado casi exclusivamente a este tema que está ubicado en el Observatorio Astronómico de La Sagra, situado en plena montaña (a una altura de 1580 m) cerca de Puebla de Don Fadrique, en la provincia de Granada, miembro de la asociación internacional Spaceguard Foundation.

Exploración

Hasta la llegada de los viajes espaciales, los objetos del cinturón de asteroides no eran más que simples puntos de luz, incluso para los más grandes telescopios, y sus formas y composición eran meramente especulativos. Los mejores telescopios terrestres y el telescopio espacial Hubble, en órbita terrestre, son capaces de resolver unos pocos detalles de las superficies de los asteroides más grandes, pero aun en este caso la mayoría de esos detalles solo son manchas borrosas. Algo más de información sobre la composición y la forma se consigue deducir de la curva de luz y de las características espectrales. El tamaño del asteroide se puede saber midiendo el tiempo que duran las ocultaciones estelares —cuando un asteroide pasa delante de una estrella— y calculando la distancia del asteroide a la Tierra. Las imágenes de radar proporcionan excelentes datos de las formas y los parámetros orbitales y rotacionales, especialmente de los asteroides cercanos a la Tierra. En cuanto a los requisitos de delta-v y propulsión, los NEO son cuerpos más accesibles que la Luna.

Asteroides visitados por sondas espaciales

Las primeras imágenes en primer plano de objetos similares a los asteroides se tomaron en 1971 cuando la sonda espacial Mariner 9 sacó fotografías de Fobos y Deimos, los dos pequeños satélites de Marte, que son probablemente asteroides capturados. Estas imágenes, al igual que las obtenidas por las Voyager de los pequeños satélites de los gigantes gaseosos, revelaron la forma irregular de estos cuerpos.

La sonda Galileo en ruta hacia Júpiter tomó las primeras fotografías cercanas a un asteroide el 29 de octubre de 1991 durante el sobrevuelo del asteroide Gaspra. Posteriormente, el 28 de marzo de 1993, hizo lo propio con Ida donde además descubrió Dáctilo, el primer satélite asteroidal confirmado. La primera sonda espacial dedicada exclusivamente a la exploración asteroidal fue la NEAR Shoemaker. Sobrevoló el 27 de junio de 1997 Matilde y entró en órbita de Eros el 14 de febrero de 2000 para aterrizar en su superficie un año más tarde, el 12 de febrero de 2001. Otros asteroides visitados por sondas de camino a sus objetivos han sido Braille por la Deep Space 1 el 28 de julio de 1999, Annefrank por la Stardust el 2 de noviembre de 2002, Šteins y Lutecia por la Rosetta el 5 de septiembre de 2008 y el 10 de julio de 2010 respectivamente y Tutatis el 13 de diciembre de 2012 por la Chang'e 2.

El 13 de junio de 2010 la sonda Hayabusa trajo a la Tierra material del asteroide Itokawa, lo que permitió establecer un vínculo entre los meteoritos condríticos y los asteroides de tipo S. Esta fue la primera vez que una misión espacial traía a la Tierra materiales de un asteroide. Anteriormente, los meteoritos habían sido la única fuente de muestras procedentes de los asteroides.

La sonda Dawn fue lanzada el 27 de septiembre de 2007 con destino Vesta y Ceres. Estuvo en órbita alrededor de Vesta entre el 16 de julio de 2011 y el 5 de septiembre de 2012. En este periodo descubrió un enorme cráter en el hemisferio sur cuyo pico central es una de las montañas conocidas más altas del sistema solar. Tras abandonar Vesta, emprendió viaje a Ceres. El 6 de marzo de 2015 entró en órbita alrededor del planeta enano. Está previsto que la misión primaria concluya en julio del mismo año.

Misiones en curso y previstas

La Agencia Japonesa de Exploración Aeroespacial (JAXA) lanzó el 3 de diciembre de 2014 la sonda Hayabusa 2 con el objetivo de traer a la Tierra una muestra de material del asteroide Ryugu, un objeto perteneciente a la clase de los asteroides de tipo C y considerado por el Minor Planet Center como un asteroide potencialmente peligroso. Está previsto que alcance el asteroide en 2018, que abandone la órbita asteroidal un año más tarde y que retorne a la Tierra en 2020. Esta será la segunda vez que una sonda espacial retorna con muestras materiales de un asteroide.

A finales de 2016 está previsto el lanzamiento de la sonda OSIRIS-REx de la NASA con destino al asteroide Bennu, perteneciente al grupo de los asteroides Apolo. El objetivo de la misión es ampliar los conocimientos científicos en formación planetaria y origen de la vida, así como traer material superficial para mejorar la comprensión de los asteroides que podrían impactar contra la Tierra. La llegada de la sonda al asteroide y su inserción en órbita están previstas para finales de 2018 y el regreso a la Tierra para 2023. Esta será la tercera vez que una sonda espacial retorna con muestras materiales de un asteroide.

Proceso de denominación de los asteroides

En principio, cuando un asteroide es descubierto recibe del «Centro de Planetas Menores» (Minor Planet Center (MPC) un nombre provisional compuesto de una clave que indica el año, el mes y orden del descubrimiento. Esta denominación consta de un número, que es el año, y de dos letras: la primera indicando la quincena en que aconteció el avistamiento y la segunda reflejando la secuencia dentro de la quincena. De este modo, 1989 AC indica que fue descubierto en la primera quincena de enero (A) de 1989, y que fue el tercero (C) descubierto en ese período.

Una vez que la órbita se ha establecido con la suficiente precisión como para poder predecir su futura trayectoria, se le asigna un número (no necesariamente el del orden en que fue descubierto) y, más tarde, un nombre permanente elegido por el descubridor y aprobado por un comité de la Unión Astronómica Internacional (International Astronomical Union (IAU). Inicialmente, todos los nombres con los que se bautizaba a los asteroides eran de personajes femeninos de la mitología griega y romana pero pronto se optó por formas más modernas. El primer asteroide que recibió un nombre no mitológico fue el número 125 de la serie, Liberatrix (liberadora en latín) que le fue otorgado en honor a Juana de Arco, aunque también se especula con que tal nombre es un homenaje al primer presidente de la República Francesa, Adolphe Thiers. Por su parte, el primer nombre masculino, lo recibió el número 433, Eros. Hoy en día, las denominaciones son mucho menos restringidas y van desde nombres de ciudades y países como Barcelona (945), Hiroshima (2247), Austria (132), China (1125) y Uganda (1279) hasta nombres de personas famosas como Zamenhof (1462) o Piazzia (1000) en honor a Piazzi, personajes de ficción como Mr. Spock (2309) y otros conceptos como razas, género géneros de animales y plantas, etc. Sin embargo se ha acordado que hay ciertos nombres y temas que están prohibidos: por ejemplo el de militares, personajes o lugares de la Segunda Guerra Mundial ya que la referencia a los mismos puede ser molesta o incluso insultante para los demás. Actualmente con la propuesta del nombre se acompaña una corta nota que informa a la comunidad internacional del porqué de dicha denominación: p. ej. «Snoopy: nombre de un personaje de ficción, concretamente un perro blanco de orejas colgantes, que acompaña a Charlie Brown y suele reflexionar sobre el tejado de la caseta en la que vive».

Las efemérides de los asteroides se recogen anualmente en un volumen titulado Ephemerides of Minor Planets, que publica el Institute of Theoretical Astronomy, Russian Academy of Sciences, Naberezhnaya Kutuzova 10, 191187 San Petersburgo, Rusia.

En ocasiones una serie de asteroides numerados consecutivamente se nombran siguiendo un patrón o en recuerdo de un acontecimiento. Así, las iniciales de los numerados del (1227) al (1234) forman el apellido de Gustav Stracke y las del (8585) al (8600) la frase latina «per aspera ad astra». Los asteroides numerados del (3350) al (3356) y los del (51823) al (51829) se nombraron en recuerdo de los astronautas fallecidos en los accidentes del Challenger y el Columbia respectivamente.

Bibliografías

  • Real Academia Española y Asociación de Academias de la Lengua Española (2014). «Asteroide». Diccionario de la lengua española (23.ª edición). Madrid: Espasa. ISBN 978-84-670-4189-7.
  • Foderà Serio, G.; Manara, A.; Sicoli, P. (2002). «Giuseppe Piazzi and the Discovery of Ceres». En Bottke, William; Cellino, Alberto; Paolicchi, Paolo et al. Asteroids III (en inglés) (1ª edición). The University of Arizona Press. pp. 17-24. ISBN 978-0-8165-2281-1.
  • Hoskin, Michael. «Bode's Law and the Discovery of Ceres». Physics of Solar and Stellar Coronae: G.S. Vaiana Memorial Symposium, Palermo, Italy, 22-26 June 1992 (en inglés).
  • Bendjoya, Ph.; Zapala, V. (2002). «Asteroid Family Identification». Asteroids III (en inglés) (1ª edición). The University of Arizona Press. pp. 613-618. ISBN 978-0-8165-2281-1.
  • Binzel, Richard P.; Lupishko, Dmitrij F.; Di Martino, Mario; Whiteley, Robert J.; Hahn, Gerhard J. «Physical Properties of Near-Earth Objects» (en inglés).
  • Morbidelli, A.; Bottke Jr., W. F.; Froeschlé, Ch.; Michel, P. «Origin and Evolution of Near-Earth Objects» (en inglés).

Fuentes