Ecuación diofántica

(Redirigido desde «Ecuaciones diofánticas»)
Ecuaciones diofánticas
Información sobre la plantilla
Campo al que perteneceÁlgebra
Principales exponentesDiofanto de Alejandría


Ecuaciones diofánticas. Estas ecuaciones reciben este nombre en honor a Diofanto, matemático que trabajó en Alejandría a mediados del siglo III a.n.e..

Definición

Se llama ecuación diofántica a cualquier ecuación algebraica, generalmente de varias variables, planteada sobre el conjunto de los números enteros Z o los números naturales N, es decir, se trata de ecuaciones cuyas soluciones son números enteros.

Ejemplo de ecuación diofántica: X + Y = 5

Esta ecuación tiene infinitas soluciones en los números reales. Como regla general, sin embargo, las ecuaciones que aparecen en los problemas tienen restricciones que nos ayudan a limitarnos a un pequeño número de casos e incluso a una única solución.

Por ejemplo, en la ecuación, si restringimos los posibles valores de x e y a los enteros positivos, tenemos 4 soluciones para (x,y): (1,4) (2,3) (3,2) (4,1).

Un problema matemático muy famoso que se resuelve por medio de ecuaciones diofánticas es el del mono y los cocos.

Ecuaciones

Forma ax + by = c

Para que ésta ecuación tenga solución c tiene que ser divisible por el máximo común divisor de a y b. En este caso la ecuación tiene un número finito de soluciones o ninguna.

Resolución: ax = c - by

Dando valores a y, desde y = 0 hasta y = a - 1, se encuentra un único valor que sea múltiplo de a.

Sea b el valor de y que hace c - by múltiplo de a. Entonces se conoce el valor de x que satisface la ecuación. Sea a ese valor.

Para obtener las demás soluciones hacemos x = a - bt e y = b +at y damos a valores a t = 0,1,2... siempre que se pueda hacer la sustracción.

Sea la ecuación 3x + 5y = 52

3x = 52 - 5y.
Para y = 0 queda 3x = 52
Para y = 1 queda 3x = 47
Para y = 2 queda 3x = 42

El único valor de y que hace x entero es y = 2. Entonces b = 2 y a = 14. x = 14 - 5t. Para t = 0, x = 14. Para t = 1, x = 9. Para t = 2, x = 4. y = 2 + 3t. Para t =0, y = 2. Para t = 1, y = 5. Para t = 2, x = 8

Forma ax - by = c

Para que ésta ecuación tenga solución c tiene que ser divisible por el máximo común divisor de a y b.

En este caso la ecuación tiene un número infinito de soluciones.

Resolución: ax = c + by

Dando valores a y, desde y = 0 hasta y = a - 1, encontraremos un único valor que sea múltiplo de a.

Sea b el valor de y que hace c + by múltiplo de a. Entonces conoceremos el valor de x que satisface la ecuación. Sea a ese valor.

Para obtener las demás soluciones hacemos x = a + bt e y = b +at y damos a valores a t = 0,1,2... siempre que se pueda hacer la sustracción.

Forma x2 - y2 = a

Como x2 - y2 = (x+y).(x-y). La ecuación queda (x-y).(x+y) = a.

Ahora se hace a = bc.

b y c deben ser ambos pares o ambos impares, pues la suma de dos números y su diferencia son ambas pares o ambas impares. Entonces

x - y = b
x + y = c

Resolviendo el sistema se obtiene:

x = (b - c) / 2
y = (b + c) / 2

Forma x2 + y2 = z2

Supondremos x, y, z primos entre sí ya que si x, y ,z es solución de la ecuación también lo es a.x, a.y, a.z para cualquier a .De ahí se deduce que encontrada una solución hay infinitas.

Suponemos x impar, lo podemos hacer ya que al ser x, y, z primos entre sí no puede haber dos pares.

Transformamos la ecuación en z2 - y2 = x2

Como z2 - y2 = (z - y)(z + y).
(z - y)(z + y) = x2

El problema se reduce a descomponer x2 como producto de dos números primos entre sí. Sean u y v estos números.

(z - y)(z + y) = uv obtenemos y = (u2 - v2)/2, z = (u2 + v2)/2

Son dos soluciones enteras puesto que la suma y la diferencia de dos impares es un número par.

Forma y2 = x3 + a

Esta ecuación con a, número natural, se llama ecuación de Louis Mordell.

Asumiendo como a cualquier número natural.

Su representación gráfica es una curva elíptica en el plano Real. Para cada a posee un número finito de soluciones enteras.

Forma xn + yn = zn

La ecuación xn + yn = zn no tiene solución para n > 3, siendo n un número entero.

Expresado en palabras significa que un cubo no se puede expresar como suma de dos cubos, y ninguna potencia mayor o igual que tres se puede expresar como suma de otras dos similares.

Este teorema estuvo sin demostrar durante más de trescientos años, aunque Fermat anotó en el margen del libro de Aritmética de la edición de Bachet "Para esto he descubierto una demostración verdaderamente maravillosa, pero el margen de éste libro es demasiado pequeño para contenerla...". Nadie encontró esa demostración y se dudó de su existencia.

El intento por demostrar este teorema ocasionó una evolución de las matemáticas.

Finalmente en 1993 Andrew Wiles demostró el teorema relacionándolo con las curvas elípticas modulares, en un manuscrito de doscientos folios.

Fuentes