Sistema binario

Revisión del 22:37 13 abr 2019 de HenrryJCG3 (discusión | contribuciones) (Aplicaciones)
Sistema Binario
Información sobre la plantilla
Sistema Binario.jpg

Sistema binario. En matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1).

Sistema Binario

Es el que se utiliza en los ordenadores, pues trabajan internamente con dos niveles de voltaje, por lo que su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).

Historia del sistema binario

El antiguo matemático hindú Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era. Una serie completa de 8 trigramas y 64 hexagramas (análogos a 3 bit) y números binarios de 6 bit, eran conocidos en la antigua China en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizados en sistemas de adivinación tradicionales africanos, como el Ifá, así como en la geomancia medieval occidental.

Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo, fue desarrollado por el erudito y filósofo Chino Shao Yong en el Siglo XI. Sin embargo, no hay ninguna prueba de que Shao entendiera el cómputo binario.

En 1605 Francis Bacon habló de un sistema por el cual las letras del alfabeto podrían reducirse a secuencias de dígitos binarios, las cuales podrían ser codificadas como variaciones apenas visibles en la fuente de cualquier texto arbitrario. El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XVII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz usó el 0 y el 1, al igual que el sistema de numeración binario actual.

En 1854, el matemático británico George Boole, publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.

Aplicaciones

En 1937, Claude Shannon realizó su tesis doctoral en el MIT, en la cual implementaba el Álgebra de Boole y aritmética binaria utilizando relés y conmutadores por primera vez en la historia. Titulada Un Análisis Simbólico de Circuitos Conmutadores y Relés, la tesis de Shannon básicamente fundó el diseño práctico de circuitos digitales.

En noviembre de 1937, George Stibitz, trabajando por aquel entonces en los Laboratorios Bell, construyó un ordenador basado en relés - al cual apodó "Modelo K" (porque lo construyó en una cocina, en inglés "kitchen")- que utilizaba la suma binaria para realizar los cálculos. Los Laboratorios Bell autorizaron un completo programa de investigación a finales de 1938, con Stibitz al mando.

El 8 de enero de 1940 terminaron el diseño de una Calculadora de Números Complejos, la cual era capaz de realizar cálculos con números complejos. En una demostración en la conferencia de la Sociedad Americana de Matemáticas, el 11 de septiembre de 1940, Stibitz logró enviar comandos de manera remota a la Calculadora de Números Complejos a través de la línea telefónica mediante un teletipo. Fue la primera máquina computadora utilizada de manera remota a través de la línea de teléfono. Algunos participantes de la conferencia que presenciaron la demostración fueron John Von Neumann, John Mauchly y Norbert Wiener, el cual escribió acerca de dicho suceso en sus diferentes tipos de memorias en la cual alcanzó diferentes logros.

Representación

Representacion de numeros binario

Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que a su vez pueden ser representados por cualquier mecanismo capaz de estar en dos estados mutuamente exclusivos. Las secuencias siguientes de símbolos podrían ser interpretadas todas como el mismo valor binario numérico:

1 0 1 0 0 1 1 0 1 0 | - | - - | | - | - x o x o o x x o x o y n y n n y y n y n

El valor numérico representado en cada caso depende del valor asignado a cada símbolo. En un ordenador, los valores numéricos pueden ser representados por dos voltajes diferentes y también se pueden usar polaridades magnéticas sobre un disco magnético. Un "positivo", "sí", o "sobre el estado" no es necesariamente el equivalente al valor numérico de uno; esto depende de la arquitectura usada.

De acuerdo con la representación acostumbrada de cifras que usan números árabes, los números binarios comúnmente son escritos usando los símbolos 0 y 1. Cuando son escritos, los números binarios son a menudo subindicados, prefijados o sufijados para indicar su base, o la raíz. Las notaciones siguientes son equivalentes:

  • 100101 binario (declaración explícita de formato)
  • 100101b (un sufijo que indica formato binario)
  • 100101B (un sufijo que indica formato binario)
  • bin 100101 (un prefijo que indica formato binario)
  • 1001012 (un subíndice que indica base 2 (binaria) notación)
  • %100101 (un prefijo que indica formato binario)
  • 0b100101 (un prefijo que indica formato binario, común en lenguajes de programación)

Fuente