Estrella de neutrones
| ||||
Sumario
Nacimineto de las Estrellas de Neutrones
Las estrellas de neutrones son remanentes estelares que han alcanzado el fin de su viaje evolutivo a través del espacio y el tiempo. Estos objetos tan interesantes nacen de estrellas anteriormente gigantes que crecen de cuatro a ocho veces el tamaño del Sol antes de explotar en supernovas catastróficas. Después de la explosión, las capas exteriores de una estrella salen despedidas al espacio, permaneciendo el núcleo pero sin volver a producir fusión nuclear. Sin presión exterior de la fusión para contrarrestar el empuje interior de la gravedad, la estrella se condensa y se colapsa.
Formación de una Estrella de Neutrones
A pesar de su pequeño diámetro (alrededor de 12,5 millas, o 20 kilómetros) las estrellas de neutrones pueden presumir de contener 1,5 veces la masa del Sol, por lo que son increíblemente densas. Un solo trozo de materia de estrella de neutrones con el tamaño de un terrón de azúcar pesaría cien millones de toneladas en la Tierra. La casi incomprensible densidad de una estrella de neutrones hace que protones y electrones se combinen en neutrones: el proceso del cual toman su nombre. La composición de sus núcleos es desconocida, pero es probable que consistan en un superfluído de neutrones o algún estado de la materia desconocido. Las estrellas de neutrones contienen un empuje gravitatorio extremadamente fuerte, mucho mayor que el de la tierra. Esta fuerza gravitatoria es particularmente impresionante dado el pequeño tamaño de la estrella. Durante su formación, las estrellas de neutrones rotan en el espacio. A medida que se comprimen y encogen, el giro en espiral se acelera debido a la conservación del momento angular, el mismo principio que hace que una patinadora gire a mayor velocidad cuando acerca sus brazos al pecho.
Las Estrellas de Neutrones también pueden ser llamadas pulsares
Las estrellas de neutrones que tienen una posición tal que el haz de luz apunte directamente hacia la Tierra haciendo que se vea una pulsación. Esto sucede ya que cuando el haz de radiación apunta a la tierra, se detecta, pero mientras da la vuelta, el haz apunta en otra dirección y no es visible en la tierra; justo como en un faro. Por lo tanto, si alguien en la Tierra tiene un receptor de ondas de radio, éste recibirá pulsos regulares con el período igual al de la rotación de la estrella de neutrones. Es por esto que este tipo de estrellas de neutrones son llamadas pulsares.