Covariancia

Covariancia
Información sobre la plantilla
Formula covariancia.jpg
Concepto:Covariancia son conceptos empleados frecuentemente en áreas de la matemática y la física teórica. Por regla general se refieren a que ciertos objetos matemáticos, que pueden representar alguna magnitud física, tienen alguna forma de invariancia de forma, es decir, la propiedad de permanecer sin cambio bajo un conjunto dado de transformaciones.

Covariancia. La covariancia es la generalización de la teoría de la relatividad especial, donde se busca que las leyes para la naturaleza tengan la misma forma en todos los sistemas de referencia, lo cual equivale a que todos los sistemas de referencia sean indistinguibles. En otras palabras, que cualquiera que sea el movimiento de los observadores, las ecuaciones tendrán la misma forma y contendrán los mismos términos. Ésta fue la principal motivación de Einstein para que estudiara y postulara la relatividad general. El principio de covariancia sugería que las leyes debían escribirse en términos de tensores, cuyas leyes de transformación covariantes y contravariantes podían proporcionar la "invariancia" de forma buscada, satisfaciéndose el principio de covariancia.

Introducción

Covariansa.jpg

Entre 1907 y 1916 Einstein empleó buena parte de su tiempo y esfuerzos en la generalización de la teoría de la invariancia a marcos de referencia no inerciales. Si bien el resultado de estos trabajos, la que después se conocería como teoría general de la relatividad, es sustancialmente más compleja que la teoría especial, en lo que sigue emplearemos lo que ya hemos aprendido de la teoría especial para comprender algunos aspectos importantes de la teoría general y después explorar algunas de sus implicaciones.

Sabemos que la teoría especial se basa en dos principios básicos, el principio de relatividad y la constancia de la velocidad de la luz. De forma similar, la teoría general también se basa en dos principios: el principio de covariancia y el principio de equivalencia. Vamos a ver que los dos son muy fáciles de plantear y entender, otra cosa mucho más complicada es expresar sus consecuencias matemáticamente, algo en lo que no entraremos.

Las ecuaciones de la mecánica newtoniana presuponían que el espacio y el tiempo eran magnitudes absolutas, de carácter universal. Sin embargo, este esquema era incompatible con la relatividad especial, cuyo axioma principal afirmaba que cada observador, dependiendo de su velocidad, tenía un tiempo local y un marco espacial diferente.

De ahí que la ecuación gravitatoria de Poisson tuviese que ser reformulada, puesto que la densidad de masa es un concepto que depende de dos magnitudes fundamentales: La primera de ellas es la masa, que es una magnitud cuya medición depende del sistema de coordenadas que escojamos y que ha de ser sustituida por la única magnitud conservada e invariante ante las transformaciones de Lorentz, el tetramomentum. La segunda de estas magnitudes es el espacio, que experimenta una contracción sensible en aquellos marcos que se muevan a grandes velocidades. Por este motivo, la densidad de masa no es un parámetro invariante, sino que su medición da resultados diferentes conforme se modifica la velocidad del observador.

El problema se plantea asimismo en el marco de las ecuaciones de Maxwell, que también contienen gradientes y derivadas temporales, y por lo tanto no son transformables.

Se hace necesario por tanto, reformular las principales ecuaciones de la mecánica clásica y la teoría electromagnética para que sean válidas para todos los sistemas de referencia. Para ello dichas leyes han de expresarse tensorialmente: Sus "ingredientes" han de venir constituidos por elementos que permanezcan invariantes ante las transformaciones de Lorentz, como las constantes o los escalares, o que sean transformables de acuerdo a ellas (es el caso de los tensores).

Idea general

Imagen que muestra la textura basada en la Covarancia

En términos generales, la dualidad intercambia covariancia y contravariancia; este es el motivo por el cual estos conceptos se presentan juntos. Para propósitos del cálculo práctico de matrices, la matriz transpuesta es relativa a dos aspectos (por ejemplo dos conjuntos de ecuaciones simultáneas). El caso en el que la matriz traspuesta de una matriz cuadrada cualquiera "A" coincide con la matriz inversa, es decir, la matriz "A" es una matriz ortogonal, es un caso en el que la covarianza y la contravarianza pueden ser tratadas de igual manera. Esto es de suma importancia en la aplicación práctica de tensores.

Una causa de mayor confusión es esta dualidad covariancia/contravariancia, que interviene cada vez en la discusión de si una cantidad vectorial o tensorial es representada por sus componentes. Esto causa discusiones en la literatura física y matemática por usar convenciones aparentemente opuestas.

Esta no es la convención que difiere, sino cuando una descripción intrínseca o en el sentido de componentes es la forma primaria de pensar en las cantidades. Como el nombre lo sugiere, las cantidades covariantes se piensan para movimiento o transformaciones hacia adelante, mientras que las cantidades contravariantes se transforman hacia atrás. Por lo cual depende de si uno está usando cualquier fondo fijo —de hecho, eso cambia el punto de vista.

Principio de Covariancia

El principio de covariancia se puede resumir diciendo que las leyes de la física son las mismas en todos los marcos de referencia. Una afirmación que nos retrotrae al principio de relatividad de la teoría especial:

Todas las leyes de la física son exactamente las mismas para cada observador en cada marco de referencia que está en reposo o moviéndose con una velocidad relativa uniforme. Esto significa que no hay ningún experimento que se pueda realizar dentro de un marco de referencia que revele si éste está en reposo o moviéndose a una velocidad uniforme.

El principio de covariancia es pues una generalización del principio de relatividad: mientras que éste se limita a los marcos de referencia inerciales, el principio de covariancia dice que las leyes de la física son las mismas en cualquier marco de referencia, independientemente de cómo se esté moviendo respecto a otro. Es en este sentido cómo las teorías de la relatividad se distinguen en especial y general: mientras que la teoría especial se aplica cuando se dan ciertas circunstancias especiales (siempre que estemos tratando con marcos de referencia inerciales), la teoría general carece de esta restricción.

El otro principio básico de la teoría general es el principio de equivalencia que viene a decir que los efectos debidos a la aceleración y los debidos a la gravedad son indistinguibles. Puede parecer una afirmación huera, porque ya sabíamos que la gravedad provoca una aceleración en física newtoniana y la relación ya la conocía el propio Newton.

Novedades que introduce Einstein

En la física de Newton aceleración y gravedad son tratadas como dos fenómenos separados y la relación entre ellas como una coincidencia. Pero el principio de equivalencia afirma que esencialmente no existe diferencia entre ambos efectos: no podemos distinguir entre ellos.

Formulación

Covariansa 2.jpg

El principio de covariansa general afirma que las leyes o ecuaciones fundamentales de la física deben tener la misma forma para cualquier observador sea cual sea el estado de movimiento de éste. La objetividad del mundo material requiere que las medidas hechas por diversos observadores sean relacionables mediante leyes de transformación fijas:

Matemáticamente el principio de covariancia implica que las leyes de la física deben ser leyes tensoriales en el que las magnitudes medidas por diferentes observadores sean relacionables de acuerdo a la transformación de coordenadas de cada observador.

Físicamente el principio de covariancia depende de que para diversos sistemas de referencia coordenados no exista procedimiento físico para distinguir entre ellos. Influido por el principio de equivalencia y otras observaciones, Einstein y otros llegaron a teorizar que era posible construir una teoría donde todas las ecuaciones pudieran ser escritas en una forma suficientemente general como para tener la misma forma en cualquier sistema de coordenadas.

Ejemplo de aplicación

Formula covariancia 2.jpg

Un ejemplo de los requerimientos del principio de covarianza es el equivalente relativista de la segunda ley de Newton que se escribe para cualquier sistema de coordenadas xi, en términos del tiempo propio (τ), los símbolos de Christoffel (Γ) del sistema de coordenadas y las componentes de la cuadrifuerza (F), como se muestra en la imagen.

Así la distinción aparente entre sistemas inerciales y no inerciales de la mecánica newtoniana era ilusoria y desaparece en relatividad general, ya que estos no son más que sistemas en los que los símbolos de Christoffel que aparecen en la expresión anterior se anulan, y por tanto, los sistemas inerciales son sólo un caso particular de sistema de referencia, pero no un tipo privilegiado o de ningún modo destacado de sistema de referencia, una vez las leyes se formulan en la forma covariante adecuada.

Esta equivalencia esencial entre aceleración y gravedad se suele ilustrar con el experimento mental del ascensor:

Suponiendo que una persona está en una caja de ascensor sin ventanas, y que la caja está depositada en la superficie de la Tierra estática, pero no se sabe. Esa persona comienza a hacer experimentos físicos para saber qué hacer ante tal situación. Lo que debe hacer es medir los objetos que deja libres a la altura de su hombro y que se mueven con movimiento uniformemente acelerado hacia el suelo (se sabe que es el suelo porque hay una fuerza que te empuja hacia esa superficie y, por eso, se le llama suelo) con una aceleración constante de 9,8 m/s.

Ahora, suponiendo que, de nuevo sin que esa persona sepa nada, la caja de ascensor se mueve por el espacio interestelar (y, por tanto, no le influye significativamente ningún campo gravitatorio) con una aceleración uniforme de 9,8 m/s en la dirección perpendicular a lo que esa persona antes llamaba suelo y sentido “del suelo al techo”. De nuevo, sus experimentos le llevarían en estas circunstancias exactamente a los mismos resultados. Es decir, los efectos prácticos de aceleración y gravedad son idénticos y no puede distinguir una situación de otra.

Uso informal

En el uso común de la física, el adjetivo covariante puede ser usado informalmente como sinónimo de invariante (o equivariante), en términos matemáticos. Por ejemplo, la Ecuación de Schrödinger no mantiene su forma escrita bajo las transformaciones de coordenadas de la relatividad especial; así uno puede decir que es no covariante. En contraste, la Ecuación de Klein-Gordon y la Ecuación de Dirac toman la misma forma en cualquier marco de referencia coordenado de la relatividad especial: así, uno puede decir que estas ecuaciones son covariantes o más formalmente, uno podría realmente decir que las ecuaciones de Klein-Gordon y de Dirac son invariantes, que la ecuación de Schrödinger no lo es, pero este no es el uso dominante. Es de notar también que ninguna de las dos ecuaciones (Klein-Gordon y de Dirac) son invariantes ante transformaciones de relatividad general (tampoco en el sentido covariante), y en el uso formal, se debe indicar que la invariancia es con respecto a la relatividad especial.

En forma similar el uso informal es a veces visto con respecto a cantidades como la masa y el tiempo en relatividad general: la masa es técnicamente un componente del cuatro-momento o el tensor energía-momento, pero uno puede ocasionalmente referirse a la masa covariante, lo que significa que es la longitud del cuatro-vector momento.

Fuentes