Tecnología nuclear

Revisión del 22:14 3 sep 2019 de Carlos idict (discusión | contribuciones) (Texto reemplazado: «<div align="justify">» por «»)
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)
Tecnología nuclear
Información sobre la plantilla
Tenu.jpeg
Concepto:es la tecnología que está relacionada con las reacciones de núcleos atómicos de ciertos elementos

La tecnología nuclear. Es aquella relacionada con las reacciones del núcleos atómicos de ciertos elementos. Las tecnologías nucleares más destacadas son: la Energía nuclear, la Medicina nuclear y las armas nucleares. Se han desarrollado aplicaciones desde detectores de humo hasta reactores nucleares, y desde miras de armas a bombas nucleares.

Historia y contexto científico

Descubrimiento

La vasta mayoría de los fenómenos naturales más comunes de la Tierra ocurren en el contexto de la gravedad y del electromagnetismo y no de las reacciones nucleares. Esto se debe a que los átomos de los núcleos se mantienen separados porque contienen cargas eléctricas positivas, y por lo tanto se repelen entre sí.

En 1896, Henri Becquerel estaba investigando la fosforescencia en sales de uranio cuando descubrió un nuevo fenómeno al que denominó radioactividad. Pierre Curie y Marie Curie comenzaron a investigar el fenómeno. En el proceso, ellos aislaron el elemento radio, que es altamente radioactivo. Ellos descubrieron que los materiales radioactivos producen intensos y penetrantes rayos de tres distintas clases, a los cuales denominaron alfa, beta y gama por las tres primeras letras del alfabeto griego. Algunos de estos podían pasar a través de la materia ordinaria y todos ellos podían ser dañinos para la salud en grandes cantidades. Todos los primeros investigadores recibieron quemaduras por radiación, parecidas a las causadas por quemaduras solares y no se preocupaban mucho al respecto.

El nuevo fenómeno de la radioactividad fue tomado por los fabricantes de medicinas falsas (como antes lo habían hecho también con la electricidad y el magnetismo) y se crearon una gran cantidad de medicinas falsas y tratamientos que usaban la radioactividad.

Gradualmente, se dieron cuenta que la radiación producida por el decaimiento radioactivo era radiación por ionización y que incluso cantidades demasiado pequeñas para causar quemaduras tenían severa peligrosidad a largo plazo. Muchos de los científicos que trabajaron con radioactividad murieron de cáncer como un resultado de su exposición a esta. Los primeros tratamientos y medicinas que usaban radioactividad desaparecieron pero otras aplicaciones de los materiales radioactivos persistieron, tales como el uso de sales de radio para producir diales autoiluminados en relojes y otros instrumentos.

Se ha llegado a la conclusión que la fuente original de la mayor parte de la energía de origen terrestre es nuclear, ya sea a través de la radiación del Sol que es causada por reacciones termonucleares estelares o por el decaimiento radioactivo del uranio dentro de la Tierra, la principal fuente de la energía geotermal.

Fisión

En la radiación nuclear natural, los subproductos son muy pequeños cuando se comparan a los núcleos de los cuales se originan. La fisión nuclear es el proceso de dividir un núcleo en dos partes aproximadamente similares, proceso que libera energía y neutrones. Si estos neutrones son capturados por otro núcleo inestable, estos también pueden fisionarse, lo que puede llevar a una reacción en cadena. La cantidad promedio de neutrones liberados por núcleos que influyen en la fisión de otro núcleo se llama k. Los valores de k más grandes que 1 significan que la reacción de fisión está liberando más neutrones de los que absorbe, y por lo tanto se le llama como una reacción en cadena auto sostenible. Una masa de material fisible lo suficientemente grande (y en una configuración adecuada) para inducir una reacción en cadena auto sostenible es llamada una masa crítica.

Cuando un neutrón es capturado por un núcleo adecuado, la fisión puede ocurrir de inmediato, o el núcleo puede persistir en un estado inestable por un corto tiempo. Si existen los suficientes decaimientos inmediatos para soporta la cadena en reacción, se dice sobre esa masa que es inmediatamente crítica, y la energía liberada crecerá rápida e incontrolablemente, lo que usualmente lleva a una explosión.

Cuando se descubrió al principio de la Segunda Guerra Mundial, esta idea llevó a varios países a comenzar programas que investigaran la posibilidad de construir una bomba atómica — un arma que utilizara las reacciones de fisión para generar lejos mucho más energía de lo que era posible lograr con explosivos químicos. El Proyecto Manhattan, llevado a cabo por Estados Unidos con la ayuda del Reino Unido y de Canadá, desarrolló varias armas de fisión que fueron usadas contra Japón en 1945. Durante el proyecto, también se desarrollaron los primeros reactores de fisión, aunque ellos fueron usados principalmente para la fabricación de armas y no para generar electricidad.

Fusión

Si los núcleos son forzados a colisionar, ellos pueden producir lo que se conoce como fusión nuclear. Este proceso puede liberar o absorber energía. Cuando el núcleo resultante es más ligero que el del hierro, normalmente se libera energía; cuando el núcleo es más pesado que el del hierro, generalmente se absorbe energía. Este proceso de fusión ocurre en las estrellas, que derivan su energía del hidrógeno y del helio. Ellos forman, a través de la núcleo síntesis estelar, elementos ligeros (litio a calcio) así como algunos de los elementos más pesados (más allá del hierro y el níquel, a través del proceso-S). Los restantes elementos pesados, del níquel al uranio y más allá, es debido a la nucleosíntesis de supernovas, el proceso-R.

Por supuesto, estos procesos naturales de astrofísica no son ejemplos de la "tecnología" nuclear. Debido a la muy fuerte repulsión de los núcleos, la fusión es difícil de lograr de una forma controlada. La bomba de hidrógeno obtiene su enorme poder destructivo de la fusión, pero su energía no puede ser controlada. La fusión controlada es lograda en aceleradores de partículas; es de esta forma como se producen muchos elementos sintéticos. Un fusor también puede producir fusión controlada y es una útil fuente de neutrones. Sin embargo, ambos dispositivos funcionan con una pérdida neta de energía. Una fuente de energía de fusión controlable, viable ha probado ser elusiva, a pesar del ocasional engaño de la fusión fría.

Las dificultades técnicas y teóricas han estorbado el desarrollo de tecnología de fusión de uso civil que funcione, aunque la investigación continúa actualmente en muchas partes en el mundo.

Inicialmente la fusión nuclear fue investigada sólo teoréticamente durante la Segunda Guerra Mundial, cuando los científicos del Proyecto Manhattan (liderados por Edward Teller) la investigaron como un método para construir una bomba. El proyecto fue abandonado después de concluir que se requeriría de una reacción de fisión para detonarla. Recién en el año 1952 la primera bomba de hidrógeno pudo ser detonada, llamada así debido a que usa las reacciones entre el deuterio y el tritio. las reacciones de fusión son mucho más energéticas por unidad de masa de combustible nuclear que las reacciones de fisión, pero comenzar una reacción en cadena de fusión es mucho más difícil.

Armas nucleares

Un arma nuclear es un dispositivo explosivo que deriva su fuerza destructiva de las reacciones nucleares, ya sea por fisión o una combinación de fisión y fusión. Ambos tipos de reacciones liberan enormes cantidades de energía a partir de relativamente pequeñas cantidades de materia. Incluso dispositivos nucleares pequeños pueden devastar a una ciudad por la onda de choque, fuego y radiación. Las armas nucleares son consideradas como armas de destrucción masiva y su uso y control han sido un aspecto principal de la política internacional desde su debut.

El diseño de armas nucleares es más complicado de lo que parece ser. Un arma de este tipo debe contener una o más masas fisibles subcríticas lo suficientemente estables para ser desplegadas, para luego inducir o crear una masa crítica para poder detonarla. También es muy difícil asegurar que la reacción en cadena consuma una fracción significativa del combustible antes de que el dispositivo vuele en pedazos. La obtención de un combustible nuclear también es más difícil de lo que parece ser, ya que ninguna substancia de ocurrencia natural es lo suficientemente inestable para que este proceso ocurra.

Un isótopo de uranio, el uranio-235, ocurre naturalmente y es lo suficientemente inestable, pero siempre se encuentra mezclado con el isótopo más estable uranio-238. Este último compone más del 99% del peso del uranio natural. A continuación métodos de separación de isótopos basados en el peso de tres neutrones se deben realizar para enriquecer (aislar) el uranio-235.

De forma alternativa, el plutonio posee un isotopo que lo suficientemente inestable para ser utilizable. El plutonio no ocurre naturalmente, así que debe ser fabricado en un reactor nuclear.

Eventualmente, el Proyecto Manhattan fabricó armas nucleares basadas en cada uno de estos elementos. Ellos detonaron la primer arma nuclear en una prueba denominada "Trinity", cerca de Alamogordo, New Mexico, el 16 de julio de 1945. La prueba fue realizada para asegurarse que el método de implosión funcionaría para detonar una bomba atómica. Una bomba de uranio, la Little Boy (en castellano: Niñito), fue lanzada sobre la ciudad japonesa de Hiroshima el 6 de agosto de 1945, seguida tres días más tarde por una basada en plutonio denominada Fat Man (en castellano: Gordo) lanzada sobre Nagasaki. Como resultado de la devastación y muertes sin precedente provocados por una sola bomba, el gobierno japonés se rindió, terminando con la Segunda Guerra Mundial.

Desde estos bombardeos ningún arma nuclear ha sido desplegada ofensivamente. Sin embargo, ellas provocaron que una carrera de armas se desarrollara para crear bombas cada vez más destructivas como una forma de disuasión nuclear. Apenas cuatro años más tarde, el 29 de agosto de 1949, la Unión Soviética detonó su primera arma de fisión. El Reino Unido la siguió el 2 de octubre de 1952, Francia el 13 de febrero de 1960 y China el 16 de octubre de 1964. Estos cinco países le son permitido poseer armas nucleares bajo el Tratado de No Proliferación Nuclear. Sólo cuatro estados soberanos reconocidos no son parte del tratado: India, Israel, Pakistán y Corea del Norte. India, Pakistán y Corea del Norte han probado abiertamente y declarado que poseen armas nucleares. Israel ha mantenido una política de ambigüedad respecto a su propio programa de armas nucleares. Corea del Norte accedió al tratado, lo violó y se retiró en el año 2003.

A diferencia de las armas convencionales, le intensa luz, calor y fuerza explosiva no son los únicos componentes mortales de un arma nuclear. Aproximadamente la mitad de las muertes de Hiroshima y Nagasaki fueron causadas entre dos a cinco años más tarde debido a la exposición a la radiación. Un arma radiológica es un tipo de arma nuclear diseñada para dispersar material nuclear peligroso en territorio enemigo. Tal arma no tendría la capacidad explosiva de una bomba de fisión o de fusión, pero podría matar muchas personas y contaminar una gran área. Un arma radiológica nunca ha sido desplegada. Mientras es considerada sin utilidad desde el punto de vista militar convencional, un arma de este tipo puede ser usada con fines de terrorismo nuclear.

Se han llevado a cabo sobre 2.000 pruebas nucleares desde 1945. En 1963, todos los estados nucleares y muchos no nucleares firmaron el Tratado de prohibición parcial de ensayos nucleares, obligándose a restringirse de realizar pruebas de armas nucleares en la atmósfera, bajo el agua o en el espacio exterior. El tratado permite la realización de pruebas nucleares subterráneas. Francia continuó con pruebas atmosféricas hasta 1974, mientras China continuó hasta 1980. La última prueba nuclear realizada por Estados Unidos fue en 1992, la Unión Soviética lo hizo en 1990, el Reino Unido en 1991, tanto Francia como China continuaron las pruebas hasta 1996. Después de firmar el Tratado de Prohibición Completa de los Ensayos Nucleares en 1996 (que al año 2011 no ha entrado en fuerza), todos estos estados se han obligado a terminar con todas las pruebas nucleares. Los estados no signatarios de India y Pakistán hicieron sus últimas pruebas en el año 1988.

Las armas nucleares son las armas conocidas más destructivas - el arquetipo de las armas de destrucción masiva. A través de la Guerra Fría, las potencias opuestas tenían enormes arsenales nucleares, suficiente para matar centenares de millones de personas. Generaciones de personas crecieron bajo la sombra de la devastación nuclear, ejemplificado en películas tales como Dr. Strangelove y The Atomic Cafe. Sin embargo, la liberación de las enormes cantidades de energía implicadas en la detonación de un arma nuclear también sugirió la posibilidad de una nueva fuente de energía.

Tratamiento de residuos nucleares

En general, cualquier aplicación industrial genera residuos. Todas las formas de generación de energía nuclear también los generan. Tanto los reactores nucleares de fisión o fusión (cuando entren en funcionamiento) como los GTR generan residuos convencionales que son trasladados a vertederos o instalaciones de reciclaje, residuos tóxicos convencionales (pilas, líquido refrigerante de los transformadores, etc.) y residuos radiactivos.

El tratamiento de todos ellos, con excepción hecha de los residuos radiactivos, es idéntico al que se da a los residuos del mismo tipo generado en otros lugares (instalaciones industriales, ciudades,...).

Es diferente el tratamiento que se emplea en los residuos radiactivos. Para ellos se desarrolló una regulación específica, gestionándose de formas diferentes en función del tipo de radiactividad que emiten y del semiperiodo que poseen. Esta regulación engloba todos los residuos radiactivos, ya procedan de instalaciones de generación de electricidad, de instalaciones industriales o de centros médicos.

Se han desarrollado diferentes estrategias para tratar los distintos residuos que proceden de las instalaciones o dispositivos generadores de energía nuclear: Baja y media actividad. En este caso se trata de residuos con vida corta, poca radiactividad y emisores de radiaciones beta o gamma (pudiendo contener hasta un máximo de 4000 Bq g-1 de emisores alfa de semiperiodo largo). Suelen ser materiales utilizados en las operaciones normales de las centrales, como guantes, trapos, plásticos, etc. En general se prensan y secan (si es necesario) para reducir su volumen, se hormigonan (fijan) y se embidonan para ser almacenados durante un periodo de 300 o de 500 años, según los países, en almacenamientos controlados. En España este almacenamiento se encuentra en la provincia de Córdoba (El Cabril).

Alta actividad. Estos residuos tienen semiperiodo largo, alta actividad y contienen emisores de radiaciones alfa (si son de semiperiodo largo solo si superan concentraciones de actividad de 4000 Bq g-1). Se generan en mucho menor volumen pero son altamente nocivos inmediatamente después de ser generados. Generalmente, aunque no son los únicos, se trata de las propias barras de combustible de los reactores de fisión ya utilizadas. Para ellos se han desarrollado diversas estrategias: Almacenamiento temporal: en las piscinas de las propias centrales (a veces llamados ATI), durante la vida de la central (habitualmente 40 años), o en almacenamientos construidos a propósito. En España aún se encuentra en proyecto el ATC).

Reprocesamiento: en este proceso se lleva a cabo una separación físico-química de los diferentes elementos, separando por una parte aquellos isótopos aprovechables en otras aplicaciones, civiles o militares (plutonio, uranio, cobalto y cesio entre otros). Es la opción más similar al reciclado. Sin embargo en el proceso no todos los elementos reciclados son totalmente reaprovechables, como por ejemplo el neptunio o el americio. Para estos, en un volumen mucho menor que el inicial, es necesario aún el uso de otras opciones como el almacenamiento geológico profundo.

Almacenamiento Geológico Profundo (AGP): este proceso consiste en estabilizar las barras de combustible gastadas en contenedores resistentes a tratamientos muy severos que posteriormente se introducen en localizaciones similares a las minas, ya existentes (como en el caso de minas profundas), o construidas para tal fin. Suelen estar en matrices geológicas de las que se sabe que han sido estables durante millones de años. Las más comunes son calizas, graníticas o salinas. Los técnicos estiman que estos AGP deberían poder preservar íntegros los residuos durante los miles de años en que sigan siendo tóxicos sin afectar a las personas de la superficie. Su principal defecto es que sería muy difícil o imposible recuperar estos residuos para su uso útil en el caso de que técnicas futuras puedan aprovecharlos eficientemente.

Transmutación en centrales nucleares de nueva generación (Sistemas Asistidos por Aceleradores o en reactores rápidos): estos sistemas usan torio como combustible adicional y degradan los desechos nucleares en un nuevo ciclo de fisión asistida, pudiendo ser una alternativa ante la dependencia del petróleo, aunque deberán vencer el rechazo de la población. El primer proyecto será construido alrededor del 2014 (Myrrha). Esta técnica se estima aceptable para aquellos radioisótopos de semiperiodo largo para los que no se ha hallado ninguna aplicación todavía. Esos isótopos más problemáticos son los transuránicos como el curio, el neptunio o el americio. Sin embargo para emplear esta técnica se precisan métodos adicionales, como el reprocesado previo.

Para gestionar los residuos radiactivos suele existir en cada país un organismo creado exclusivamente para ello. En España se creó la Empresa Nacional de Residuos Radiactivos, que gestiona los residuos radiactivos de todo tipo generados tanto en las centrales nucleares como en el resto de instalaciones nucleares o radiactivas.

Fuente

Libro de Isaac Asimov - La Historia de la energía nuclear (1985). Fusión nuclear