Turbocompresor

Revisión del 11:58 13 ene 2015 de Edeliochajc (discusión | contribuciones)
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)
turbocompresor
Información sobre la plantilla
Turbocompresor.jpg

Turbocompresor podría definirse como un “aparato soplador” o compresor de aire movido por una turbina. Se puede considerar que está formado por tres cuerpos: el de la turbina, el de los cojinetes o central y el del compresor, van acoplados a ambos lados de los cojinetes.

Compresor y turbina están unidos por un eje y encerrados bien en una carcasa común, o bien la turbina integrada en el mismo colector de escape. Es un sistema de sobrealimentación que usa una turbina centrífuga para accionar mediante un eje coaxial con ella, un compresor centrífugo para comprimir gases.

Funcionamineto

La turbina es movida por los gases de escape al pasar por sus aspas, lo que provocan el movimiento giratorio y la generacion de enregía centrifúga. En el eje de la turbina hay un compresor centrífugo que toma el aire a presión atmosférica antes o después de pasar por el filtro de aire y luego lo comprime antes de introducirlo en los cilindros. Este aumento de la presión de la carga consigue introducir en el cilindro un mayor volumen de mezcla (carga combustible) que el volumen real del cilindro permitiría a presión atmosférica, obteniendo el motor más potencia que un motor atmosférico de cilindrada equivalente.

Los turbocompresores más pequeños y de presión de soplado más baja ejercen una presión máxima de 0,25 bar (3,625 psi), mientras que los más grandes alcanzan los 1,5 bar (21,75 psi).

Ciclos de funcionamiento del Turbo

  • Funcionamiento a ralentí y carga parcial inferior: En estas condiciones el rodete de la turbina de los gases de escape es impulsada por medio de la baja energía de los gases de escape, y el aire fresco aspirado por los cilindros no será precomprimido por la turbina del compresor, simple aspiración del motor.
  • Funcionamiento a carga parcial media: Cuando la presión en el colector de aspiración (entre el turbo y los cilindros) se acerca la atmosférica, se impulsa la rueda de la turbina a un régimen de revoluciones mas elevado y el aire fresco aspirado por el rodete del compresor es precomprimido y conducido hacia los cilindros bajo presión atmosférica o ligeramente superior, actuando ya el turbo en su función de sobrealimentación del motor.
  • Funcionamiento a carga parcial superior y plena carga: En esta fase continua aumentando la energía de los gases de escape sobre la turbina del turbo y se alcanzara el valor máximo de presión en el colector de admisión que debe ser limitada por un sistema de control (válvula de descarga). En esta fase el aire fresco aspirado por el rodete del compresor es comprimido a la máxima presión que no debe sobrepasar los 0,9 bar en los turbos normales y 1,2 en los turbos de geometría variable.

Historia del Turbocompresor

En los primeros años del automóvil, la forma de conseguir más potencia fue relativamente sencilla: si se querían más caballos se subía la cilindrada, bien empleando pistones de mayor tamano o bien aumentando el número de cilindros. Este tipo de solución no presentaba problemas graves en vehículos de uso normal, pero en competición pronto se demostró que no era la solución ideal.También se aumentó la velocidad de giro de los motores, pero la fragilidad y el aumento de peso no favorecían lo más mínimo a la hora de competir.

Ante este problema surgió una tercera vía para conseguir más potencia. Si ésta, en definitiva, dependía de la cantidad de gasolina que se quemaba dentro de los motores, si se forzaba su entrada a los mismos se podrían conseguir más caballos sin necesidad de construirlos con cilindradas enormes o con más cilindros. La idea de la sobrealimentación es casi centenaria y existen patentes que se remontan al siglo XIX Ya los hermanos Daimler, patentaron un tipo de compresor en 1896, y el ingeniero Büchi también presentó en 1905 la primera idea de lo que podría ser un turbocompresor, la cual completó en 1910 con un sistema básicamente igual al que se utiliza hoy día. El mismo Büchi trabajó intensamente con su idea y en 1925 llegó a perfeccionarlo de tal manera que su invento aún está vigente en determinados tipos de motores diesel.

La llegada del turbo al motor de combustión interna se produjo más tarde y su aplicación comenzó en la competición, después de que por los años sesenta se utilizase con profusión el compresor volumétrico. Los éxitos más notables en la implantación del turbo vinieron de la mano del ingeniero francés Auguste Rateau. Después, por encargo de Renault, comenzó en los anos setenta, ya con los debidos medios, su aplicación a motores de competición en la categoría de los Sport Prototipos. Así nació el Renault Alpine A-442, que sirvió de base para el motor de Fórmula 1 que debuto en 1977. A partir de ese momento, comenzó una vertiginosa carrera en la aplicación del turbo para motores de vehículos de gran serie, hasta el punto de que en la actualidad no hay fabricante de prestigio que no comercialice alguno de sus modelos dotado de turbo.

Constitución de un turbocompresor

Partes del turbocompresor

Los elementos principales que forman un turbo son el eje común que tiene en sus extremos los rodetes de la turbina y el compresor este conjunto gira sobre los cojinetes de apoyo, los cuales han de trabajar en condiciones extremas y que dependen necesariamente de un circuito de engrase que los lubrica.

Por otra parte el turbo sufre una constante aceleración a medida que el motor sube de revoluciones y como no hay limite alguno en el giro de la turbina empujada por los gases de escape, la presión que alcanza el aire en el colector de admisión sometido a la acción del compresor puede ser tal que sea mas un inconveniente que una ventaja a la hora de sobrealimentar el motor. Por lo tanto se hace necesario el uso de un elemento que nos limite la presión en el colector de admisión. Este elemento se llama válvula de descarga o válvula waste gate

Utilización en distinto tipos de motores

Diesel: En los motores diésel el turbocompresor está más difundido debido a que este tipo de motor trabaja por autoencendido; es decir, el combustible se enciende espontáneamente al aumentar la temperatura del mismo. Esta temperatura es lograda por el aumento de la presión de la carga de aire en el cilindro durante la fase de compresión, y, al alcanzarse la más alta temperatura de la carga de aire, el gasóleo es inyectado, haciendo combustión espontáneamente, obviando el sistema de encendido. Al aumentar el volumen de la carga de aire durante el ciclo de admisión mediante el uso de un turbocompresor, se logra aumentar considerablemente el rendimiento del motor, así como su capacidad de respuesta.

Gasolina: En los motores a gasolina, normalmente de inyección indirecta, el combustible se inyecta en el paso entre el turbocompresor y la cámara de combustión (múltiple de admisión). En un motor diésel de inyección directa, se introduce el combustible directamente en la cámara de combustión al finalizar la fase de compresión, cuando la carga de aire ha alcanzado su mayor temperatura.

En los motores de gasolina, en cambio, se debe reducir la relación de compresión para evitar el autoencendido. Esto produce una disminución del rendimiento (para el mismo consumo se obtiene menos energía), con lo que el consumo es más alto que en un motor atmosférico, incluso cuando no se demanda mucha potencia. Para mitigar este problema, la marca Saab ha ideado un sistema de compresión variable, mediante el cual se consiguen 225 CV en un motor de 1,6 L con un consumo normal de un 1,6.

Debido a que los motores a gasolina incorporan una "mariposa", la cual regula la cantidad de mezcla a ingresar en los cilindros, es necesaria la utilización de una válvula adicional llamada "blow-off". Al cerrar la mariposa de forma repentina la presión en las cañerías aumenta y el caudal se reduce drásticamente; estos factores llevan a al turbocompresor a un área de trabajo inestable conocida como "surge", que, de no ser evitada, daña el turbocompresor. Para evitarla, la blow-off libera parte del aire proveniente del turbocompresor. Las blow-off pueden recircular el exceso de presión a la entrada de la admisión (en este caso se llaman válvulas "diverter" o "desviadora" ) y válvulas blow-off propiamente dichas, que descargan la presión al exterior produciendo un sonido característico.

Como la energía utilizada para comprimir el aire de admisión proviene de los gases de escape, este sistema no resta potencia al motor, a diferencia de otros, como los sistemas con compresor mecánico (sistemas en los que el compresor es accionado por la correa de distribución conectada al cigüeñal).

Intercooler

El aire, al ser comprimido, se calienta y pierde densidad; es decir: en un mismo volumen tenemos menos masa de aire, por lo que es capaz de quemar menos combustible y, en consecuencia, se genera menos potencia. Además, al aumentar la temperatura de admisión aumenta el peligro de pistoneo o picado y se reduce la vida útil de muchos componentes por exceso de temperatura.

Para disminuir esta problemática se interpone entre el turbocompresor y la admisión un "intercambiador de calor" o "intercooler". Este sistema reduce la temperatura del aire, con lo que se recupera la densidad de éste.

Existen 3 tipos de intercoolers:

  • Aire/aire: en estos el aire comprimido intercambia su calor con aire externo.
  • Aire/agua: el aire comprimido intercambia su calor con un líquido que puede ser refrigerado por un radiador, o, en algunas aplicaciones, con hielo en un depósito ubicado en el interior del coche.
  • Criogénicos: se enfría la mezcla mediante la evaporación de un gas sobre un intercambiador aire/aire. Para todos los motores sirve el gas natural.

Demora de respuesta

Los motores provistos de turbocompresores padecen de una demora mayor en la disposición de la potencia que los motores atmosféricos (NA Normal Aspiration o Aspiración Normal) o con compresor mecánico, debido a que el rendimiento del turbocompresor depende de la presión ejercida por éste. En esta demora influyen la inercia del grupo (su diámetro y peso) y el volumen del colector entre la turbina y la salida de los gases de escape del cilindro.

Un turbocompresor no funciona de igual manera en distintos regímenes de motor. A bajas revoluciones, el turbocompresor no ejerce presión porque la escasa cantidad de gases no empuja con suficiente fuerza. Un turbocompresor más pequeño evita la demora en la respuesta, pero ejerce menos fuerza a altas revoluciones. Distintos fabricantes de motores han diseñado soluciones a este problema.

Un "biturbo" es un sistema con dos turbocompresores de distinto tamaño. A bajas revoluciones funciona solamente el pequeño, debido a su respuesta más rápida, y el grande funciona únicamente a altas revoluciones, ya que ejerce mayor presión.

Un "biturbo en paralelo" o "twin turbo" es un sistema con dos turbocompresores pequeños de idéntico tamaño. Al ser más pequeños que si fuera un turbocompresor único, tienen una menor inercia rotacional, por lo que empiezan a generar presión a revoluciones más bajas y se disminuye la demora de respuesta.

Un "turbocompresor asimétrico" consiste poner un solo turbocompresor pequeño en una bancada (la delantera en el motor V6 colocado transversalmente) dejando la otra libre. La idea no es conseguir una gran potencia, sino que la respuesta sea rápida. Este sistema fue inventado por el fabricante sueco Saab y utilizado en el Saab 9-5 V6.

Un "'biturbo secuencial" se compone de dos turbocompresores idénticos. Cuando hay poco volumen de gases de escape se envía todo este volumen a un turbocompresor, y cuando este volumen aumenta, se reparte entre los dos turbocompresores para lograr una mayor potencia y un menor tiempo de respuesta. Este sistema es utilizado en el motor Wankel del Mazda RX-7.

También Mazda, tiene un prototipo de turbo eléctrico. El sistema eléctrico del coche no puede dar suficiente caudal para el motor a altas revoluciones, pero si a bajas. así ambos se complementan. Con baja carga y revoluciones, la ayuda eléctrica permite un rápido aumento de presión y después la turbina puede suministrar toda la potencia para comprimir el aire. Este sistema ahorra mucha más energía que combinándolo con un compresor mecánico movido por el motor.

El sistema acompañado por un compresor mecánico ha tenido muy buenos resultado en prestaciones y consumo en el motor TSI de VW.

Evolución del turbocompresor

Actualmente se está cambiando la filosofía de aplicación de los turbocompresores, antes primaba la potencia a altas revoluciones y ahora cada vez más, que el coche responda bien en todo el régimen de giro de uso.

La válvula llamada waste-gate evita presiones excesivas que dañen el motor. En algunos modelos esta presión excesiva es mantenida durante un corto período de tiempo, alrededor de un minuto, cuando se pisa el acelerador a fondo. Estos sistemas se denominan overdrive u overboost.

Refrigeración

Normalmente el turbocompresor suele estar refrigerado con aceite que circula mientras el motor esta en marcha. Si se apaga bruscamente el motor después de un uso intensivo, y el turbocompresor esta muy caliente, el aceite que refrigera los cojinetes del turbocompresor se queda estancado y su temperatura aumenta, con lo que se puede empezar a carbonizar, disminuyendo su capacidad lubricante y acortando la vida del turbocompresor.

El Turbo Timer es un sistema que mantiene circulando el aceite en el turbocompresor durante un lapso de tiempo después del apagado del motor. Algunos modelos funcionan con sensores que detectan la intensidad en el uso del turbocompresor para permitir la lubricación forzada del mismo por un tiempo prudencial después del apagado del motor.

Fuentes