Bacteria

(Redirigido desde «Bacterias»)
Bacterias
Información sobre la plantilla
Bacterias 1.jpeg
Concepto:Son microorganismos unicelulares que presentan un tamaño de algunos micrómetros de largo y diversas formas.

Bacterias. Microorganismos unicelulares que presentan un tamaño de algunos micrómetros de largo (entre 0,5 y 5 µm, por lo general) y diversas formas incluyendo esferas, barras y hélices. Las bacterias son procariotas y, por lo tanto, a diferencia de las células eucariotas de los animales y las plantas no tienen núcleo ni orgánulos internos.

El examen microscópico de las bacterias no permite identificarlas, ya que existen pocos tipos morfológicos, cocos (esféricos), bacilos (bastón), espirilos (espiras) y es necesario por lo tanto recurrir a técnicas que se detallarán más adelante. El estudio mediante la microscopia óptica y electrónica de las bacterias revela la estructura de éstas.

Origen y evolución

Bacteriaevolucion.jpg

Los seres vivos se dividen actualmente en tres dominios: bacterias (Bacteria), arqueas (Archaea) y eucariontes (Eukarya). En los dominios Archaea y Bacteria se incluyen los organismos procariotas, esto es, aquellos cuyas células no tienen un núcleo celular diferenciado, mientras que en el dominio Eukarya se incluyen las formas de vida más conocidas y complejas (protistas, animales, hongos y plantas).

El término "bacteria" se aplicó tradicionalmente a todos los microorganismos procariotas. Sin embargo, la filogenia molecular ha podido demostrar que los microorganismos procariotas se dividen en dos dominios, originalmente denominados Eubacteria y Archaebacteria, y ahora renombrados como Bacteria y Archaea que evolucionaron independientemente desde un ancestro común. Estos dos dominios, junto con el dominio Eukarya, constituyen la base del sistema de tres dominios, que actualmente es el sistema de clasificación más ampliamente utilizado en bacteriología.

El término Mónera, actualmente en desuso, en la antigua clasificación de los cinco reinos significaba lo mismo que procariota, y así sigue siendo usado en muchos manuales y libros de texto.

Los antepasados de los procariotas modernos fueron los primeros organismos (las primeras células) que se desarrollaron sobre la tierra, hace unos 3.800-4.000 millones años. Durante cerca de 3.000 millones de años más, todos los organismos siguieron siendo microscópicos, siendo probablemente bacterias y arqueas las formas de vida dominantes. Aunque existen fósiles bacterianos, por ejemplo los estromatolitos, al no conservar su morfología distintiva no se pueden emplear para estudiar la historia de la evolución bacteriana, o el origen de una especie bacteriana en particular. Sin embargo, las secuencias genéticas sí se pueden utilizar para reconstruir la filogenia de los seres vivos, y estos estudios sugieren que arqueas y eucariontes están más relacionados entre sí que con las bacterias.

Se discute si los primeros procariotas fueron bacterias o arqueas. Algunos investigadores piensan que Bacteria es el dominio más antiguo con Archaea y Eukarya derivando a partir de él, mientras que otros consideran que el dominio más antiguo es Archaea. Se ha propuesto que el ancestro común más reciente de bacterias y arqueas podría ser un hipertermófilo que vivió entre 2.500 y 3.200 millones de años atrás. En cambio, otros científicos sostienen que tanto Archaea como Eukarya son relativamente recientes (de hace unos 900 millones de años) y que evolucionaron a partir de una bacteria Gram-positiva (probablemente una Actinobacteria), que mediante la sustitución de la pared bacteriana de peptidoglicano por otra de glicoproteína daría lugar a un organismo Neomura.

Las bacterias también han estado implicadas en la segunda gran divergencia evolutiva, la que separó Archaea de Eukarya. Se considera que las mitocondrias de los eucariontes proceden de la endosimbiosis de una proteobacteria alfa. En este caso, el antepasado de los eucariontes, que posiblemente estaba relacionado con las arqueas (el organismo Neomura), ingirió una proteobacteria que, al escapar a la digestión, se desarrolló en el citoplasma y dio lugar a las mitocondrias. Éstas se pueden encontrar en todos los eucariontes, aunque a veces en formas muy reducidas, como en los protistas amitocondriales. Después, e independientemente, una segunda endosimbiosis por parte de algún eucarionte mitocondrial con una cianobacteria condujo a la formación de los cloroplastos de algas y plantas.

Morfología bacteriana

Morfología bacteriana

Las bacterias presentan una amplia variedad de tamaños y formas. La mayoría presentan un tamaño diez veces menor que el de las células eucariotas, es decir, entre 0,5 y 5 µm. Sin embargo, algunas especies como Thiomargarita namibiensis y Epulopiscium fishelsoni llegan a alcanzar los 0,5 mm, lo cual las hace visibles al ojo desnudo. En el otro extremo se encuentran bacterias más pequeñas conocidas, entre las que cabe destacar las pertenecientes al género Mycoplasma, las cuales llegan a medir solo 0,3 µm, es decir, tan pequeñas como los virus más grandes.

La forma de las bacterias es muy variada y, a menudo, una misma especie adopta distintos tipos morfológicos, lo que se conoce como pleomorfismo. De todas formas, podemos distinguir tres tipos fundamentales de bacterias:

Coco

(del griego kókkos, grano)en forma esférica:

  • Diplococo: cocos en grupos de dos.
  • Tetracoco: cocos en grupos de cuatro.
  • Estreptococo: cocos en cadenas.
  • Estafilococo: cocos en agrupaciones irregulares o en racimo.

Bacilo

(del latín baculus, varilla): en forma de bastoncillo.

Formas helicoidales

  • Vibrio: ligeramente curvados y en forma de coma, judía o cacahuete.
  • Espirilo: en forma helicoidal rígida o en forma de tirabuzón.
  • Espiroqueta: en forma de tirabuzón (helicoidal flexible).

Algunas especies presentan incluso formas tetraédricas o cúbicas. Esta amplia variedad de formas es determinada en última instancia por la composición de la pared celular y el citoesqueleto, siendo de vital importancia, ya que puede influir en la capacidad de la bacteria para adquirir nutrientes, unirse a superficies o moverse en presencia de estímulos.

Las bacterias presentan la capacidad de anclarse a determinadas superficies y formar un agregado celular en forma de capa denominado biopelícula o biofilme, los cuales pueden tener un grosor que va desde unos pocos micrómetros hasta medio metro. Estas biopelículas pueden congregar diversas especies bacterianas, además de protistas y arqueas, y se caracterizan por formar un conglomerado de células y componentes extracelulares, alcanzando así un nivel mayor de organización o estructura secundaria denominada microcolonia, a través de la cual existen multitud de canales que facilitan la difusión de nutrientes.

En ambientes naturales tales como el suelo o la superficie de las plantas, la mayor parte de las bacterias se encuentran ancladas a las superficies en forma de biopelículas. Dichas biopelículas deben ser tenidas en cuenta en las infecciones bacterianas crónicas y en los implantes médicos, ya que las bacterias que forman estas estructuras son mucho más difíciles de erradicar que las bacterias individuales.

Por último, cabe destacar un tipo de morfología más compleja aún, observable en algunos microorganismos del grupo de las mixobacterias. Cuando estas bacterias se encuentran en un medio escaso en aminoácidos son capaces de detectar a las células de alrededor, en un proceso conocido como quorum sensing, en el cual todas las células migran hacia las demás y se agregan, dando lugar a cuerpos fructíferos que pueden alcanzar los 0,5 mm de longitud y contener unas 100.000 células. Una vez formada dicha estructura las bacterias son capaces de llevar a cabo diferentes funciones, es decir, se diferencian, alcanzando así un cierto nivel de organización pluricelular. Por ejemplo, entre una y diez células migran a la parte superior del cuerpo fructífero y, una vez allí, se diferencian para dar lugar a un tipo de células latentes denominadas mixosporas, las cuales son más resistentes a la desecación y, en general, a condiciones ambientales adversas.

Estructura y fisiología de las bacterias

Estructura de superficie y de cubierta

La cápsula no es constante. Es una capa gelatinomucosa de tamaño y composición variables que juega un papel importante en las bacterias patógenas.

Los cilios, o flagelos, no existen más que en ciertas especies. Filamentosos y de longitud variable, constituyen los órganos de locomoción. Según las especies, pueden estar implantados en uno o en los dos polos de la bacteria o en todo su entorno. Constituyen el soporte de los antígenos "H". En algunos bacilos gramnegativos se encuentran pili, que son apéndices más pequeños que los cilios y que tienen un papel fundamental en genética bacteriana.

La pared que poseen la mayoría de las bacterias explica la constancia de su forma. En efecto, es rígida, dúctil y elástica. Su originalidad reside en la naturaleza química del compuesto macromolecular que le confiere su rigidez. Este compuesto, un mucopéptido, está formado por cadenas de acetilglucosamina y de ácido murámico sobre las que se fijan tetrapéptidos de composición variable. Las cadenas están unidas por puentes peptídicos. Además, existen constituyentes propios de las diferentes especies de la superficie.

La diferencia de composición bioquímica de las paredes de dos grupos de bacterias es responsable de su diferente comportamiento frente a un colorante formado por violeta de genciana y una solución yodurada (coloración Gram). Se distinguen las bacterias grampositivas (que tienen el Gram después de lavarlas con alcohol) y las gramnegativas (que pierden su coloración).

Se conocen actualmente los mecanismos de la síntesis de la pared. Ciertos antibióticos pueden bloquearla. La destrucción de la pared provoca una fragilidad en la bacteria que toma una forma esférica (protoplasto) y estalla en medio hipertónico (solución salina con una concentración de 7 g. de NaCI por litro). La membrana citoplasmática, situada debajo de la pared, tiene permeabilidad selectiva frente a las sustancias que entran y salen de la bacteria. Es soporte de numerosas enzimas, en particular las respiratorias. Por último, tiene un papel fundamental en la división del núcleo bacteriano. Los mesosomas, repliegues de la membrana, tienen una gran importancia en esta etapa de la vida bacteriana.

Estructuras internas

  • El núcleo lleva el material genético de la bacteria; está formado por un único filamento de ácido desoxirribonucleico ( ADN) apelotonado y que mide cerca de 1 mm de longitud (1000 veces el tamaño de la bacteria).
  • Los ribosomas son elementos granulosos que se hallan contenidos en el citoplasma bacteriano; esencialmente compuestos por ácido ribonucleico, desempeñan un papel principal en la síntesis proteica. 
  • El citoplasma, por último, contiene inclusiones de reserva.

División celular bacteriana

La síntesis de la pared, el crecimiento bacteriano y la duplicación del ADN regulan la división celular. La bacteria da lugar a dos células hijas. La división empieza en el centro de la bacteria por una invaginación de la membrana citoplasmática que da origen a la formación de un septo o tabique transversal. La separación de las dos células va acompañada de la segregación en cada una de ellas de uno de los dos genomas que proviene de la duplicación del ADN materno.

Espora bacteriana

Ciertas bacterias grampositivas pueden sintetizar un órgano de resistencia que les permite sobrevivir en condiciones más desfavorables, y se transforma de nuevo en una forma vegetativa cuando las condiciones del medio vuelven a ser favorables. Esta espora, bien estudiada gracias a la microscopia electrónica, contiene la información genética de la bacteria la cual está protegida mediante dos cubiertas impermeables. Se caracteriza por su marcado estado de deshidratación y por la considerable reducción de actividades metabólicas, lo que contrasta con su riqueza enzimática. La facultad de esporular está sometida a control genético y ciertos gérmenes pueden perderla. La germinación de las esporas es siempre espontánea. Da lugar al nacimiento de una bacteria idéntica al germen que había esporulado.

Nutrición y crecimiento bacterianos

Las bacterias necesitan de un aporte energético para desarollarse. Se distinguen distintos tipos nutricionales según la fuente de energía utilizada: las bacterias que utilizan la luz son fotótrofas y las que utilizan los procesos de oxirreducción son quimiótrofas. Las bacterias pueden utilizar un sustrato mineral (litótrofas) u orgánico (organótrofas). Las bacterias patógenas que viven a expensas de la materia orgánica son quimioorganótrofas.

La energía en un sustrato orgánico es liberada en la oxidación del mismo mediante sucesivas deshidrogenaciones. El aceptor final del hidrógeno puede ser el oxígeno: se trata entonces de una respiración. Cuando el aceptor de hidrógeno es una sustancia orgánica (fermentación) o una sustancia inorgánica, estamos frente a una anaerobiosis.

Además de los elementos indispensables para la síntesis de sus constituyentes y de una fuente de energía, ciertas bacterias precisan de unas sustancias específicas: los factores de crecimiento. Son éstos unos elementos indispensables para el crecimiento de un organismo incapaz de llevar a cabo su síntesis. Las bacterias que precisan de factores de crecimiento se llaman "autótrofas". Las que pueden sintetizar todos sus metabolitos se llaman "protótrofas". Ciertos factores son específicos, tal como la nicotinamida ( vitamina B,) en Proteus. Existen unos niveles en la exigencia de las bacterias. Según André Lwoff, se pueden distinguir verdaderos factores de crecimiento, absolutamente indispensables, factores de partida, necesarios al principio del crecimiento y factores estimulantes. El crecimiento bacteriano es proporcional a la concentración de los factores de crecimiento. Así, las vitaminas, que constituyen factores de crecimiento para ciertas bacterias, pueden ser dosificadas por métodos microbiológicos (B12 y Lactobacillus lactis Doraren).

Se puede medir el crecimiento de las bacterias siguiendo la evolución a lo largo del tiempo del número de bacterias por unidad de volumen. Se utilizan métodos directos como pueden ser el contaje de gérmenes mediante el microscopio o el contaje de colonias presentes después de un cultivo de una dilución de una muestra dada en un intervalo de tiempo determinado. Igualmente se utilizan métodos indirectos (densidad óptica más que técnicas bioquímicas).

Existen seis fases en las curvas de crecimiento. Las más importantes son la fase de latencia (que depende del estado fisiológico de los gérmenes estudiados) y la fase exponencial, en la que la tasa de crecimiento es máxima. El crecimiento se para como consecuencia del agotamiento de uno o varios alimentos, de la acumulación de sustancias nocivas, o de la evolución hacia un pH desfavorable: se puede obtener una sincronización en la división de todas las células de la población, lo que permite estudiar ciertas propiedades fisiológicas de los gérmenes.

Genética bacteriana

Por la rapidez en su multiplicación, se eligen las bacterias como material para los estudios genéticos. En un pequeño volumen forman enormes poblaciones cuyo estudio evidencia la aparición de individuos que tienen propiedades nuevas. Se explica este fenómeno gracias a dos procesos comunes a todos los s o, traducidas por la aparición brusca eres vivos: las variaciones del genotipo de un carácter transmisible a la descendencia, y las variaciones fenotípicas, debidas al medio, no transmisibles y de las que no es apropiado hablar en genética. Las variaciones del genotipo pueden provenir de mutaciones, de transferencias genéticas y de modificaciones extracromosómicas.

Mutaciones

Todos los caracteres de las bacterias pueden ser objeto de mutaciones y ser modificados de varias maneras.

Las mutaciones son raras: la tasa de mutación oscila entre 10 y 100. Las mutaciones aparecen en una sola vez, de golpe. Las mutaciones son estables: un carácter adquirido no puede ser perdido salvo en caso de mutación reversible cuya frecuencia no es siempre idéntica a las de las mutaciones primitivas. Las mutaciones son espontáneas:no son inducidas, sino simplemente reveladas por el agente selectivo que evidencia los mutantes. Los mutantes, por último, son específicos: la mutación de un carácter no afecta a la de otro.

El estudio de las mutaciones tiene un interés fundamental. En efecto, tiene un interés especial de cara a la aplicación de dichos estudios a los problemas de resistencia bacteriana a los antibióticos. Análogamente tiene una gran importancia en los estudios de fisiología bacteriana.

Transferencias genéticas

Estos procesos son realizados mediante la transmisión de caracteres hereditarios de una bacteria dadora a una receptora. Existen varios mecanismos de transferencia genética.

A lo largo de la transformación, la bacteria receptora adquiere una serie de caracteres genéticos en forma de fragmento de ADN. Esta adquisición es hereditaria. Este fenómeno fue descubierto en los pneumecocos en 1928.

En la conjugación, el intercambio de material genético necesita de un contacto entre la bacteria dadora y la bacteria receptora. La cualidad de dador está unida a un factor de fertilidad (F) que puede ser perdido. La transferencia cromosómica se realiza generalmente con baja frecuencia. No obstante, en las poblaciones F+, existen mutantes capaces de transferir los genes cromosómicos a muy alta frecuencia.

La duración del contacto entre bacteria dadora y bacteria receptora condiciona la importancia del fragmento cromosómico transmitido. El estudio de la conjugación ha permitido establecer los mapas cromosómicos de ciertas bacterias. Ciertamente, la conjugación juega un papel en la aparición en las bacterias de resistencia a los antibióticos.

La transducción es una transferencia genética obtenida mediante introducción en una bacteria receptora de genes bacterianos inyectados por un bacteriófago. Se trata de un virus que infecta ciertas bacterias sin destruirlas y cuyo ADN se integra en el cromosoma bacteriano. La partícula fágica transducida a menudo ha perdido una parte de su genoma que es sustituida por un fragmento de gene de la bacteria huésped, parte que es así inyectada a la bacteria receptora. Según el tipo de transducción, todo gen podrá ser transferido o, por el contrario, lo serán un grupo de genes determinados.

Variaciones extracromosómicas

Además de por mutaciones y transferencias genéticas, la herencia bacteriana pude ser modificada por las variaciones que afectan ciertos elementos extracromosómicos que se dividen con la célula y son responsables de caracteres transmisibles: son los plasmidios y episomas entre los cuales el factor de transferencia de residencia múltiple juega un papel principal en la resistencia a los antibióticos.

Clasificación de las bacterias

La identificación de las bacterias es tanto más precisa cuanto mayor es el número de criterios utilizados. Esta identificación se realiza a base de modelos, agrupados en familias y especies en la clasificación bacteriológica. Las bacterias se reúnen en 11 órdenes:

  1. Las eubacteriales, esféricas o bacilares, que comprenden casi todas las bacterias patógenas y las formas fotótrofas.
  2. Las pseudomonadales, orden dividido en 10 familias entre las que cabe citar las Pseudomonae y las Spirillacae. 3
  3. Las espiroquetales (treponemas, leptospiras).
  4. Las actinomicetales (micobacterias, actinomicetes).
  5. Las rickettsiales.
  6. Las micoplasmales.
  7. Las clamidobacteriales.
  8. Las hifomicrobiales.
  9. Las beggiatoales.
  10. Las cariofanales.
  11. Las mixobacteriales.

Relaciones entre la bacteria y su huésped

Ciertas bacterias viven independientes e otros seres vivos. Otras son parásitas. Pueden vivir en simbiosis con su huésped ayudándose mutuamente o como comensales (sin beneficio). Pueden ser patógenas, es decir, vivir de su huésped.

La virulencia es la aptitud de un microorganismo para multiplicarse en los tejidos de su huésped (creando en ellos alteraciones). Esta virulencia puede estar atenuada (base del principio de la vacunación) o exaltada (paso de un sujeto a otro). La virulencia puede ser fijada por liofilización. Parece ser función del huésped (terreno) y del entorno (condiciones climáticas). La puerta de entrada de la infección tiene igualmente un papel considerable en la virulencia del germen.

El poder patógeno es la capacidad de un germen de implantarse en un huésped y de crear en él trastornos. Está ligada a dos causas:

  • La producción de lesiones en los tejidos mediante constituyentes de la bacteria, como pueden ser enzimas que ella excreta y que atacan tejidos vecinos o productos tóxicos provenientes del metabolismo bacteriano.
  • La producción de toxinas. Se puede tratar de toxinas proteicas (exotoxinas excretadas por la bacteria, transportadas a través de la sangre y que actúan a distancia sobre órganos sensibles) o de toxinas glucoproteicas (endotoxinas), estas últimas actuando únicamente en el momento de la destrucción de la bacteria y pudiendo ser responsables de choques infecciosos en el curso de septicemias provocadas por gérmenes gramnegativos en el momento en que la toxina es brutalmente liberada.

A estas agresiones microbianas, el organismo opone reacciones defensivas ligadas a procesos de inmunidad, mientras que el conflicto huésped-bacteria se traduce por manifestaciones clínicas y biológicas de la enfermedad infecciosa.

Importancia de las bacterias

Existen bacterias en todos los sitios. Hemos visto el interés de su estudio para la comprensión de la fisiológica celular, de la síntesis de proteínas y de la genética. Aunque las bacterias patógenas parecen ser las más preocupantes, su importancia en la naturaleza es ciertamente menor. El papel de las bacterias no patógenas es fundamental. Intervienen en el ciclo del nitrógeno y del carbono, así como en los metabolismos del azufre, del fósforo y del hierro. Las bacterias de los suelos y del las aguas son indispensables para el equilibrio biológico.

Por último, las bacterias pueden ser utilizadas en las industrias alimenticias y químicas: intervienen en la síntesis de vitaminas y de antibióticos.

Las bacterias tienen, por lo tanto, un papel fundamental en los fenómenos de la vida, y todas las áreas de la biología han podido ser mejor comprendidas gracias a su estudio.

Ver además

Fuente

Enlaces externos