Multímetro

Multímetro
Información sobre la plantilla
Multimetro-analogico-sanwa-475px.jpg
Multímetro Analógico Sarwa. Intrumento de medición eléctrica.

Multímetro. Instrumento eléctrico con el cual se puede medir voltajes AC, DC, resistores, capacitores, transistores, amperajes, continuidad, etc.

Antecedentes históricos

El multímetro tiene un antecedente bastante claro, denominado AVO, que ayudó a elaborar los multímetros actuales tanto digitales como analógicos. Su invención viene dada de la mano de Donald Macadie, un ingeniero de la British Post Office, a quién se le ocurrió la ingeniosa idea de unificar 3 aparatos en uno, tales son el Amperímetro, Voltímetro y por último el Óhmetro, de ahí viene su nombre Multímetro AVO. Esta magnífica creación, facilitó el trabajo a todas las personas que estudiaban cualquier ámbito de la Electrónica.

Circuito básico de un multimetro

Ahora bien, tras dicha creación únicamente quedaba vender el proyecto a una empresa, cuyo nombre era Automatic Coil Winder and Electrical Equipment Company (ACWEECO, fue fundada probablemente en 1923), saliendo a la venta el mismo año. Este multímetro se creó inicialmente para analizar circuitos en corriente continua y posteriormente se introdujeron las medidas de corriente alterna. A pesar de ello muchas de sus características se han visto inalteradas hasta su último modelo, denominado Modelo 8 y presentado en 1951. Los modelos M7 y M8 incluían además medidas de capacidad y potencia. Dichos modelos se pueden apreciar en las dos imágenes correspondientes.

Utilidad

El amperímetro, el voltímetro, y el ohmiómetro utilizan un galvanómetro para hacer su medición. La diferencia entre estos aparatos es el circuito utilizado con el movimiento básico. Es por lo tanto claro que se puede diseñar un instrumento para realizar las tres funciones de medición. Este dispositivo, tiene un interruptor de función que selecciona el circuito apropiado al galvanómetro y es llamado comúnmente multímetro o medidor – volt – ohm - miliampere (VOM).

Uno de los instrumentos de propósitos más versátiles, capaz de medir voltajes de cd y ca, corriente y resistencia, es el multímetro electrónico de estado sólido o VOM. Aunque los detalles del circuito varían de un instrumento a otro, un multímetro electrónico generalmente contiene los siguientes elementos:

  • Amplificador de cd de puente – equilibrado y medidor indicador.
  • Atenuador de entrada o interruptor de RANGO, para limitar la magnitud del voltaje de entrada al voltaje deseado.
  • Sección de rectificación para convertir el voltaje de ca de entrada en voltaje de cd proporcional.
  • Batería interna y un circuito adicional para proporcionar la capacidad para medir resistencias.
  • Interruptor de función, para seleccionar las distintas funciones de medición del instrumento.

Además el instrumento suele incluir una fuente de alimentación para su operación con la línea de ca y, en la mayoría de los casos, una batería para operarlo como instrumento portátil de prueba.

Elementos

Amperímetro

Se conoce como amperímetro al dispositivo que mide corriente. La corriente que se va a medir debe pasar directamente por el amperímetro, debido a que éste debe conectarse en serie a la corriente.

Cuando use este instrumento para medir corrientes continuas, asegúrese de conectarlo de modo que la corriente entre en el Terminal positivo del instrumento y salga por el Terminal negativo. Idealmente, un amperímetro debe tener resistencia cero de manera que no altere la corriente que se va a medir. Esta condición requiere que la resistencia del amperímetro sea pequeña comparada con R, + R2. Puesto que cualquier amperímetro tiene siempre alguna resistencia, su presencia en el circuito reduce ligeramente la corriente respecto de su valor cuando el amperímetro no está presente.

Amperímetro de bobina móvil

La bobina móvil, teniendo en cuenta su delicada construcción, no puede conducir más que una pequeña fracción de amperío. Para valores mayores, la mayor parte de la corriente se hace por una derivación, o shunt, de baja resistencia en paralelo con el instrumento. La escala, sin embargo, se calibra generalmente para leer en ella la corriente total 1, aun cuando la corriente I, que pasa por la bobina sea sólo de unos cuantos miliamperios.

Shunt

El shunt típico, consiste en una o más tiras de aleación de resistencia soldadas a bloques termínales de latón; el cable se atornilla a éstos, suministrándose los tornillos necesarios.

Las tiras se hacen a menudo de manganina que tiene un bajo coeficiente de temperatura. También, es útil conectar un resistor de recarga de coeficientes de temperatura despreciable, en serie con la bobina. De este modo, la distribución de corriente entre el instrumento y la derivación es afectada muy poco por la temperatura.

Otra posible fuente de error se debe a la corriente termoeléctrica establecida en el circuito local por una diferencia de temperatura entre los extremos de la derivación, que podría originarse por un calentamiento desigual de las conexiones con el cable. La manganina es también apropiada en este respecto, debido a su baja f.e.m. termoeléctrica con el latón.

Aunque la resistencia de la derivación para grandes corrientes es menor que para las pequeñas, la potencia absorbida es mayor, debido a que es proporcional al cuadrado de la corriente y a la resistencia. Para corrientes pequeñas la derivación se acomoda por lo general dentro de la caja del instrumento. Para corrientes intensas el gran tamaño necesario para una adecuada disipación del calor hace necesario el montaje externo, lo que tiene la ventaja que el instrumento puede encontrarse lejos de la derivación, incluso en un cuarto separado.

El medidor en sí, se calibra para que con el alcance máximo de voltaje aplicado en la entrada, la aguja se desvíe hasta el otro extremo de la carátula. Si el medidor, en este caso un mA., es de 0 -1 miliamperio sin resistencia interna, 1 voltio aplicado a través de un resistor de 1K (1000 ohmios), ocasiona un recorrido completo de la aguja por la escala. Si a través de este mismo resistor aplicamos 0.5 amperios, la aguja recorrerá únicamente la mitad de la escala. Esta es la forma básica de como funciona este instrumento.

Este ya posee un selector de operación, con puedes medir varios niveles de voltajes de D.C como de C.A. para lo cual se utiliza el diodo en serie con un resistor limitador. La corriente promedio que sale de un diodo es .318 su valor máximo, esto significa que si se aplica 1 voltio al instrumento el promedio de corriente deberá ser 0.318 mA., en lugar de 1 mA. Los voltímetros más prácticos usan un doblador de voltaje para aumentar la sensibilidad a 0.636 el valor dado. Ahora se entiende porqué los voltímetros no tienen una escala baja para corriente alterna.

Voltímetro

El voltímetro es un aparato que mide la diferencia de potencial entre dos puntos. Para efectuar esta medida se coloca en paralelo entre los puntos cuya diferencia de potencial se desea medir. La diferencia de potencial se ve afectada por la presencia del voltímetro. Para que este no influya en la medida, debe de desviar la mínima intensidad posible, por lo que la resistencia interna del aparato debe de ser grande.

Como rV es conocida, la medida de la intensidad I, permite obtener la diferencia de potencial. La resistencia serie debe de ser grande, para que la intensidad que circule por el voltímetro sea despreciable. Se puede cambiar de escala sin más que cambiar la resistencia serie.

La diferencia de potencial entre dos puntos cualesquiera en el circuito puede medirse uniendo simplemente las terminales del voltímetro entre estos puntos sin romper el circuito. La diferencia de potencial en el resistor R2 se mide conectando el voltímetro en paralelo con R2. También en este caso, es necesario observar la polaridad del instrumento. El terminal positivo del voltímetro debe conectarse en el extremo del resistor al potencial más alto, y el terminal negativo al extremo del potencial más bajo del resistor. Un voltímetro ideal tiene resistencia infinita de manera que no circula corriente a través de él. Esta condición requiere que el voltímetro tenga una resistencia que es muy grande en relación con R2. En la práctica, si no se cumple esta condición, debe hacerse una corrección respecto de la resistencia conocida del voltímetro.

Bobina móvil

La mayoría de los voltímetros no miden la d.d.p. como tal, sino que toman una pequeña corriente de operación proporcional a aquélla; pueden considerarse por tanto como miliamperímetros de alta resistencia, calibrados en voltios.

En un instrumento de bobina móvil, no es posible hacer la resistencia de la bobina suficientemente grande, por lo que se conecta en serie con la bobina un resistor R de eureka o de otra aleación de alta resistencia, con un despreciable coeficiente de temperatura; a esta resistencia se le llama a veces un resistor de multiplicación o multiplicador, porque permite leer en el instrumento un alto voltaje V, con sólo un bajo voltaje V, aplicado a través de la bobina. Por lo general, el multiplicador se monta dentro de la caja del instrumento, pero puede estar afuera si la gama de medidas es muy grande.

El voltímetro debe tomar solamente una corriente pequeña que no perturbe apreciablemente el circuito donde se conecta. La recíproca de la corriente total es usada a menudo como una medida de, esta propiedad. En el ejemplo anterior la recíproca es 1/0.015 = 66.7, lo que significa que cualquiera que sea su gama, el voltímetro tiene una resistencia de 66.7 ohmios por cada voltio marcado en su escala; para instrumentos usados en circuitos de potencia son comunes valores entre 50 y 500 ohmios por voltio. Frecuentemente se necesitan mayores valores para mediciones en aparatos para corrientes de iluminación, pero entonces el instrumento es necesariamente más delicado y fácil de dañar.

Galvanómetro

El galvanómetro es el principal componente utilizado en la construcción de amperímetros y voltímetros. Las características esenciales de un tipo común, conocido como galvanómetro de D Arsonval. Está compuesto por una bobina de alambre montada de modo que pueda girar libremente sobre un pivote en un campo magnético proporcionado por un imán permanente. La operación básica del galvanómetro aprovecha el hecho de que un momento de torsión actúa sobre una espira de corriente en presencia de un campo magnético.

El momento de torsión experimentado por la bobina es proporcional a la corriente que circula por ella. Esto significa que cuanto más grande la corriente, tanto mayor el momento de torsión, así como el giro de la bobina antes de que el resorte se tense lo suficiente para detener la rotación. Por tanto, la cantidad de desviación es proporcional a la corriente. Después de que el instrumento se calibra de manera apropiada, puede usarse junto con otros elementos de circuito para medir ya sea corrientes o diferencias de potencial.

Un galvanómetro estándar no es adecuado para usarse como un amperímetro, debido principalmente a que un galvanómetro común tiene una resistencia cercana a 60 S2. La resistencia de un amperímetro de esta magnitud altera de manera considerable la corriente en el circuito en el cual se coloca. Esto puede entenderse considerando el siguiente ejemplo. Suponga que usted construye un circuito en serie simple que contiene una batería de 3 V y un resistor de 3 S2. La corriente en este circuito es 1 A. Sin embargo, si usted inserta un galvanómetro de 60 0 en el circuito para medir la corriente, la resistencia total del circuito es 63 12 y la corriente se reduce a 0.048 A.

Un segundo factor que limita el uso del galvanómetro como un amperímetro es el hecho de que un galvanómetro común brinda una desviación de máxima escala para corrientes muy bajas, del orden de 1 mA o menos.

Consecuentemente, dicho galvanómetro no puede usarse de manera directa para medir corrientes mayores que ésta. Sin embargo, es posible convertir un galvanómetro en un amperímetro colocando un resistor Pt, en paralelo con el galvanómetro. El valor de Ri„ conocido algunas veces como resistor en derivación, debe ser muy pequeño respecto de la resistencia del galvanómetro, de modo que la mayor parte de la corriente que se va a medir circule por el resistor en derivación.

Un galvanómetro también puede utilizarse como un voltímetro añadiendo un resistor externo Rs en serie con él. En este caso, el resistor externo debe tener un valor muy grande respecto de la resistencia del galvanómetro. Esto asegura que el galvanómetro no altere de manera significativa el voltaje que se va a medir.

Bobina móvil

Este instrumento se usa principalmente para detectar, más bien que para medir, pequeñas diferencias de potencial, como con los instrumentos «nulos»

El galvanómetro de bobina móvil es esencialmente un milivoltímetro con el cero a la mitad de su escala. En común con otros instrumentos con el cero en el centro, la bobina está normalmente alineada con los polos, desviándose el índice a la izquierda o a la derecha dependiendo del sentido de la corriente. Generalmente las divisiones de la escala son arbitrarias, como las de la balanza, sin que correspondan a ningún valor en particular de d.d.p. de corriente.

Instrumento de hierro móvil

En las primeras formas de este instrumento la desviación se producía por la atracción de una pieza de hierro dulce dentro dc una bobina llevando la corriente que debe medirse. En instrumentos modernos se emplean dos piezas de hierro, colocadas dentro de la bobina C. La pieza de hierro F está sujeta a la bobina y la pieza móvil M a la espiga. La corriente en la bobina imanta a las dos piezas de hierro con igual polaridad; entonces su repulsión mutua proporciona la torca de desviación que mueve al índice sobre la escala.

El amortiguamiento con corrientes vagas es imposible porque el imán permanente perturbaría el funcionamiento del aparato; en su lugar se usa invariablemente amortiguamiento con aire. Se representa un método común donde una ligera aspa de aluminio, unida a la espiga, se mueve en el interior de una caja cerrada en forma de sector de círculo, pero sin tocarla. El aire que pasa de un lado a otro de la caja absorbe energía del sistema en movimiento y amortigua la oscilación.

Los instrumentos de hierro móvil no están polarizados: funcionan igualmente bien con cualquier sentido de la corriente, por lo que son apropiados para mediciones con c.a. En circuitos de c.d. no pueden emplearse como instrumentos de cero central, no sirviendo tampoco para determinar la polaridad de la f.e.m.

La escala está dividida desigualmente; la repulsión entre las piezas de hierro es proporcional al producto de sus flujos y, por tanto, aproximadamente proporcional al cuadrado de la corriente, lo que causa acumulación de las divisiones en el extremo izquierdo de la escala, empeorándose este efecto por la baja permeabilidad del hierro en campos débiles. Las aleaciones de hierro-níquel, como el Mumetal y el Permaloy, son mejores en este aspecto y se usan frecuentemente en la actualidad. Un mejoramiento en la escala es también debido a la forma de las piezas de hierro.

El instrumento tiene otras desventajas. El consumo de potencia es generalmente mayor que con los instrumentos de bobina móvil. Las lecturas son más fácilmente afectadas por los campos magnéticos de origen externo, excepto que la bobina tenga una pantalla magnética. Hay también un efecto de histéresis en las piezas de hierro, que hace que las lecturas del instrumento sean más bajas o más altas, dependiendo de si la corriente aumenta o disminuye. Este efecto es pequeño si las piezas de hierro se hacen de acero al silicio o de una aleación de hierro- níquel.

Ohmímetros

Aparato diseñado para medir la resistencia eléctrica en ohmios. Debido a que la resistencia es la diferencia de potencial que existe en un conductor dividida por la intensidad de la corriente que pasa por el mismo, un ohmímetro tiene que medir dos parámetros, y para ello debe tener su propio generador para producir la corriente eléctrica.

Los ohmímetros más comunes son multimetros esto es, instrumentos que por medio de un dial pueden utilizarse para medir la diferencia de potencial, la intensidad de corriente o la resistencia; normalmente pueden preseleccionarse en una gran variedad de rangos de modo que se pueden utilizar ohmímetros de laboratorio relativamente baratos para medir resistencias desde fracciones de ohmio hasta varios millones de ohmios (megaohmios). Los ohmímetros se utilizan mucho para detección de fallos en circuitos eléctricos. Un ingeniero eléctrico conoce los valores aproximados de resistencia que deben existir entre determinados puntos del circuito y puede comprobarlos fácilmente con el ohmímetro.

Ohmímetro. Los instrumentos para medir la relación de dos cantidades se llaman relacionímetros. El ohmímetro es de esta clase porque mide la relación entre la d.d.p. y la corriente.

El instrumento consiste en dos bobinas móviles, fijas entre sí, pero con libertad de girar entre los polos de un imán permanente. Ambas bobinas se alimentan de la pila o batería B, pero mientras que la corriente en la bobina de voltaje V es constante, la que pasa por la bobina de corriente C depende de la resistencia entre las terminales de prueba TT. Aquí no hay resortes o pesas de control; la corriente llega y sale de las bobinas a través de alambres muy delgados que no ejercen una torca apreciable en el sistema móvil.

Las condiciones con las terminales de prueba en circuito abierto, correspondiendo asía una resistencia infinita; entonces no hay corriente en la bobina de corriente por lo que la bobina de voltaje está en libertad de colocarse por sí misma con su eje alineado con los polos. Si se conecta ahora un resistor a las terminales de prueba, la bobina de corriente ejercerá una torea en sentido antirreloj y el índice se moverá en la escala hasta equilibrarse con la torea de control de la bobina de voltaje. Cualquier cambio de la d.d.p. en la batería afecta análogamente a las dos bobinas, por lo que la posición del índice no se afecta. Los instrumentos prácticos tienen sistemas especiales de bobinas, diseñados para obtener una escala mejor dividida. Aquellos que se emplean para medir la resistencia de aislamientos necesitan un alto voltaje como fuente de corriente para un funcionamiento satisfactorio; por lo general, funcionan con un generador impulsado a mano.

Multímetros Digitales

La mayoría de los multímetros digitales se fabrican tomando como base ya sea un convertidor A/D de doble rampa o de voltaje a frecuencia, con ajuste de rango. Para dar flexibilidad para medir voltajes en rangos dinámicos más amplios con la suficiente resolución, se emplea un divisor de voltaje para escalar el voltaje de entrada.

Para lograr la medición de voltajes de ca, se incluye un rectificador en el diseño del medidor. Como las exactitudes de los rectificadores no son tan altas como las de los circuitos de medición de voltaje de cd, las exactitudes general de los instrumentos de medición de ca es menor que cuando se miden voltajes de cd (las exactitudes para voltajes de ca van desde + 1.012 hasta + 1 por ciento + 1 digito). Las corrientes se miden haciendo que el voltímetro digital determine la caída de voltaje a través de una resistencia de valor conocido y exacto.

Aunque el valor de una resistencia se puede especificar con mucha exactitud, hay cierto error adicional debido al cambio de resistencia como función del efecto de calentamiento de la corriente que pasa a través de ella.

Además, se debe tener cuidado al emplear la función de medición de corriente. No se debe permitir que pase demasiada corriente a través de la resistencia. Las exactitudes típicas de las mediciones de corriente de cd van desde + 0.03 hasta + 2 por ciento de la lectura + 1 dígito, mientras que para corriente alterna son de + 0.05 a + 2 por ciento + 1 dígito.

El voltímetro digital se convierte en óhmetro cuando se incluye en él una fuente muy exacta de corriente. Esta fuente circula corriente a través de la resistencia que se mide y el resto de los circuitos del voltímetro digital monitorea la caída de voltaje resultante a través del electo. La fuente de corriente es exacta sólo para voltajes menores que el voltaje de escala completa del voltímetro digital. Si la resistencia que se mide es demasiado grande, la corriente de prueba de la fuente de poder disminuirá. Las exactitudes de los voltímetros digitales multiusos que se emplean apara medir la resistencia van desde + 0.002 por ciento de la lectura + 1 dígito hasta + 1 por ciento de la lectura + 1 dígito.

Muchos multímetros digitales son instrumentos portátiles de baterías. Algunos se diseñan con robustez para permitirles soportar los rigores de las mediciones de campo. Otros poseen características tales como operación de sintonización automática de rango (lo cual significa que el medidor ajusta de manera automática sus circuitos de medición para el rango de voltaje, corriente o resistencia), compatibilidad con salida decimal codificada binaria o IEEE-488, y medición de conductancia y aun de temperatura.

Fuentes