Química de la atmósfera


Química de la atmósfera
Información sobre la plantilla
Química de la atmósfera.jpeg
Concepto:Aplicación de la química al estudio de las sustancias presentes en la atmósfera terrestre.

La Química de la atmósfera es una rama de la ciencias de la atmósfera en la que se estudian los procesos químicos que tienen lugar en la atmósfera de la Tierra y de otros planetas. Se caracteriza por la enorme dilución de las sustancias presentes en ella y por la influencia de las radiaciones presentes sobre dichas sustancias.

Antecedentes

Los antiguos griegos consideraban al aire como uno de los cuatro elementos, pero los primeros estudios científicos de la composición atmosférica comenzaron en el siglo XVIII. Químicos como Joseph Priestley, Antoine Lavoisier y Henry Cavendish hicieron las primeras medidas de la composición de la atmósfera.

A finales del siglo XIX y comienzos del XX el interés se desplazó hacia los constituyentes que aparecían en concentraciones muy pequeñas. Un hito particularmente importante para la química atmosférica fue el descubrimiento delozono por Christian Friedrich Schoenbein en1840.

En el siglo XX, la ciencia atmosférica pasó de estudiar la composición del aire a considerar cómo habían cambiado con el tiempo las concentraciones de gases traza en la atmósfera y los procesos químicos que crean y destruyen los componentes del aire. Dos ejemplos especialmente importantes de esta cuestión fueron la explicación de cómo se crea y se mantiene la capa de ozono, obra de los astrónomos Sydney Chapman y Gordon Dobson, y la explicación de la niebla fotoquímica por Arie Jan Haagen-Smit. Estudios posteriores sobre la cuestión del ozono condujeron a la obtención del premio Nobel de Química en 1995 a Paul Crutzen, Mario Molina y Frank Sherwood Rowland.

En el siglo XXI el enfoque de estudio está cambiando de nuevo. La Química de la atmósfera se estudia cada vez más como una parte de las Ciencias de la tierra. En lugar de concentrarse sobre la química atmosférica de modo aislado, el enfoque ahora consiste en verlo como una parte de un sistema junto al resto de la atmósfera de la Tierra, la biosfera y la geosfera. Un hilo conductor especialmente importante para este enfoque lo forman las relaciones entre la química y el clima, como los efectos del cambio climático sobre la recuperación del agujero de ozono y viceversa, y además la interacción de la composición de la atmósfera con los océanos y ecosistemas terrestres.

Atmósfera

La atmósfera está formada por una mezcla de gases generalmente estables, pues éstos se encuentran en una homogénea proporción, y más aún si hablamos de las proximidades a la superficie de la Tierra. Dicha zona gaseosa del planeta, conforma la capa externa de la Tierra, siendo además la capa más extensa y con menor densidad de la Tierra, concentrándose la mayor parte de su masa ( en torno al 99%), en los primeros 30 kilómetros.

La atmósfera es esencial para la vida por lo que sus alteraciones tienen una gran repercusión en el hombre y otros seres vivos y, en general, en todo el planeta. Es un medio extraordinariamente complejo y la situación se hace todavía más complicada y difícil de estudiar cuando se le añaden emisiones de origen humano en gran cantidad, como está sucediendo en estos últimas décadas.

Componentes en Peso Molecular

Esta composición está dada en la fracción molar que ocupa cada elemento.

  • Nitrógeno 0.78084 28.013
  • Oxígeno 0.20948 31.998
  • Argón 0.00934 39.948
  • Bióxido de carbono 0.000330 44.0099
  • Neón 0.00001818 20.183
  • Helio 0.00000524 04.003
  • Metano 0.000002 16.043
  • Kriptón 0.00000114 83.80
  • Hidrógeno 0.0000005 02.0159
  • Oxido Nitroso 0.0000005 44.0128
  • Xenón 0.000000087 131.30

a El ozono, bióxido de azufre, bióxido de nitrógeno, amoniaco y monóxido de carbono, existen como gases traza en cantidades variables.

Contaminación del aire y su origen

Una atmósfera contaminada puede dañar la salud de las personas y afectar a la vida de las plantas y los animales. Pero, además, los cambios que se producen en la composición química de la atmósfera pueden cambiar el clima, producir lluvia ácida o destruir el ozono, fenómenos todos ellos de una gran importancia global. Se entiende la urgencia de conocer bien estos procesos y de tomar las medidas necesarias para que no se produzcan situaciones graves para la vida de la humanidad y de toda la biosfera.

Nuestra actividad, incluso la más normal y cotidiana, origina contaminación. Cuando usamos electricidad, medios de transporte, metales, plásticos o pinturas; cuando se consumen alimentos, medicinas o productos de limpieza; cuando se enciende la calefacción o se calienta la comida o el agua; etc. se producen, directa o indirectamente, sustancias contaminantes. En un país industrializado la contaminación del aire procede, más o menos a partes iguales, de los sistemas de transporte, los grandes focos de emisiones industriales y los pequeños focos de emisiones de las ciudades o el campo; pero no debemos olvidar que siempre, al final, estas fuentes de contaminación dependen de la demanda de productos, energía y servicios que hacemos el conjunto de la sociedad.

"Cualquier circunstancia que añadida o quitada de los normales constituyentes del aire, puede llegar a alterar sus propiedades físicas o químicas lo suficiente para ser detectado por los componentes del medio".

Lo habitual es considerar como contaminantes sólo aquellas substancias que han sido añadidas en cantidades suficientes como para producir un efecto medible en las personas, animales, vegetales o los materiales.

Substancias que pueden ser contaminantes

Puede ser un contaminante cualquier elemento, compuesto químico o material de cualquier tipo, natural o artificial, capaz de permanecer o ser arrastrado por el aire. Puede estar en forma de partículas sólidas, gotas líquidas, gases o en diferentes mezclas de estas formas.

Contaminación primaria y secundaria

Resulta muy útil diferenciar los contaminantes en dos grandes grupos con el criterio de si han sido emitidos desde fuentes conocidas o se han formado en la atmósfera. Así tenemos: - Contaminantes primarios.- Aquellos procedentes directamente de las fuentes de emisión Contaminantes secundarios:- Aquellos originados en el aire por interacción entre dos o más contaminantes primarios, o por sus reacciones con los constituyentes normales de la atmósfera.


Procesos químicos de la atmósfera

Los procesos químicos que ocurren en la atmósfera, revisemos algunas de las propiedades químicas importantes de sus dos componentes principales, N2 y O2. Sabemos que la molécula de N2 tiene un enlace triple entre los átomos de nitrógeno. Esta unión es muy fuerte y es la responsable de la baja radiactividad del N2, que sólo experimenta reacciones en condiciones extremas. La energía de unión O -O en O2 es mucho menor que para el N2, y el O2 es, por consiguiente, mucho más reactivo que el N2. El oxígeno reacciona con muchas sustancias para formar óxidos. Los óxidos de los no metales -por ejemplo SO2 -suelen formar soluciones ácidas cuando se disuelven en agua. Los óxidos de los metales activos y de otros metales en estado de oxidación bajo, -por ejemplo- forman soluciones básicas cuando se disuelven en agua.

a) Las regiones exteriores de la atmósfera

Aunque la porción exterior de la atmósfera, más allá de la estratosfera, contiene solamente una pequeña fracción de la masa de la atmósfera, juega un papel importante en la determinación de las condiciones de vida en la superficie terrestre. Esta capa superior forma el bastión de defensa externo contra el peligro de la radiación y las partículas de alta energía que bombardean continuamente al planeta. A medida que esto sucede, las moléculas y los átomos de la atmósfera superior experimentan cambios químicos.

Fotodisociación

El sol emite energía radiante dentro de límites muy amplios de longitudes de onda. Mientras más corta es la longitud de onda, más alta es la energía de las radiaciones en la zona del ultravioleta del espectro y tienen suficiente energía para ocasionar cambios químicos. Sabemos que la radiación electromagnética se puede representar como un flujo de fotones. La energía de cada fotón está dada por la relación E=hv, en donde h es la constante de Plank y v es la frecuencia de la radiación. Para que ocurra un cambio químico cuando la radiación llega a la atmósfera de la Tierra, se deben de satisfacer dos condiciones. Primero, debe haber fotones con suficiente energía para llevar a cabo un proceso químico determinado. Segundo, las moléculas deben absorber estos fotones. Este requisito significa que la energía de los fotones se convierte en otra forma de energía dentro de la molécula.

La ruptura de un enlace químico que resulta de la absorción de un fotón por una molécula se llama fotodisociación. Uno de los procesos más importantes que ocurren en la atmósfera superior, por arriba de los 120Km, es la fotodisociación de la molécula de oxígeno:

O2(g) + hv 2O(g)

La energía mínima requerida para causar este cambio está determinada por la energía de disociación de O2 , 495kJ/mol.

La segunda condición que se debe satisfacer antes de que la disociación se lleve a cabo, es que el fotón debe ser absorbido por O2. Afortunadamente para nosotros, el O2 absorbe gran parte de la radiación de alta energía de longitud de onda corta, proveniente del espectro solar, antes de que llegue a la atmósfera inferior. Al hacerlo se forma el oxígeno atómico, O. A grandes altitudes, la disociación del O2 es muy importante. A 400 Km, solamente el 1% del oxígeno está en forma de O2; el otro 99% está en forma de oxígeno atómico. A 130Km, O2 y O son igualmente abundantes. Por debajo de esta altura, O2 es más abundante que O.

Debido a la energía de disociación del enlace de N2, que es muy elevada, solamente los fotones de longitud de onda muy corta poseen suficiente energía para disociar está molécula. Además, N2 no absorbe fácilmente los fotones, aun cuando éstos tengan suficiente energía. El resultado general es que en la atmósfera superior se forma muy poco nitrógeno atómico debido a la disociación de N2.

Fotoionización

En 1901, Guillermo Marconi llevó a cabo un experimento sensacional. Recibió en San Luis, Newfoundland, una señal de radio transmitida desde Land's End, Inglaterra, a 2900Km de distancia. Como se creía que las ondas de radio viajaban en línea recta, se supuso que la comunicación por radio sobre la Tierra era imposible a grandes distancias. El exitoso experimento de Marconi sugirió que en alguna la atmósfera terrestre afectaba sustancialmente la propagación de las ondas de radio. Su descubrimiento dio lugar al estudio de la atmósfera superior. Hacia 1924, mediante estudios experimentales se estableció la existencia de electrones en la atmósfera superior.

Por cada electrón que existe en la atmósfera superior, hay un ion correspondiente con carga positiva. Los electrones en la atmósfera superior se deben principalmente a la fotoionización de moléculas, causada por la radiación solar. Para que se efectúe la fotoionización, un fotón debe ser absorbido por una molécula, y este fotón debe tener energía suficiente para remover al electrón de energía más elevada.

b)Capa de ozono en la atmósfera superior

En contraste con el N2 , el O2 y el O, que absorben fotones con longitudes de onda menores de 240nm, el ozono es la sustancia más importante que absorbe fotones con longitudes de onda de 240 a 310nm. Consideremos cómo se forma el ozono en la atmósfera superior y cómo absorbe los fotones.

A altitudes inferiores a los 90 Km, la mayor parte de la radiación de longitud de onda corta capaz de producir fotoionización ha sido absorbida. La radiación capaz de disociar la molécula de O2 es tan intensa, sin embargo, que provoca la disociación de O2, por debajo de los 30Km. Los procesos químicos que ocurren después de la fotodisociación de O2 en la región por debajo de 90Km, son muy diferentes de los procesos que ocurren a mayores altitudes. En la mesósfera y la estratosfera, la concentración de O2 es mucho mayor que la de oxígeno atómico. Por consiguiente, los átomos de O que se forman en la mesósfera y la estratosfera sufren colisiones frecuentes con moléculas de O2. Estas colisiones llevan a la formación del ozono, O3:

O(g) + O2(g) --> O3(g)

La reacción de O con O2 para formar O3 da como resultado la liberación de 105kJ/mol.

La molécula de ozono, una vez formada, no dura mucho. El ozono es capaz de absorber la radiación solar, lo que resulta en su descomposición en O2 y O. Debido a que solamente se requieren 105kJ/mol para este proceso, los fotones de longitud de onda menor de 1140nm tienen suficiente energía para disociar el O3. Las absorciones más fuertes y más importantes, sin embargo, son las de fotones de 200 a 310nm. Sino fuera por la capa de ozono en la estratosfera, estos fotones de alta energía penetrarían a la superficie de laTierra. La vida vegetal y animal como la conocemos no podía sobrevivir en presencia de esta radiación de energía tan elevada. El "escudo ozono" es, por consiguiente, para nuestro bienestar. Se debe notar, sin embargo, que las moléculas de ozono se que forman este escudo indispensable contra la radiación, representa solamente una fracción de los átomos de oxígeno que existen en la estratosfera. Esto se debe a que las moléculas de ozono se destruyen continuamente a medida que se forman.

La fotodescomposición del ozono invierte la reacción que origina su formación. Tenemos así un proceso cíclico de formación y descomposición de ozono, que resume como sigue:

O2(g) + hv O(g) --> O3(g)

O3(g) --> hv O2(g) + O(g)

El esquema descrito arriba para la formación y la destrucción de las moléculas de ozono explica algunos hechos conocidos respecto a al capa de ozono. Sin embargo, se efectúan muchas reacciones químicas que implican otras sustancias y no sólo al oxígeno. Además, se deben considerar los efectos de la turbulencia y los vientos que mezclan la estratosfera.

Enlaces externos

Fuentes

  • Caldwell, L. K. Ecología, Ciencia y política medioambiental. Madrid: Editorial McGraw-Hill, 1993. Texto de ensayo en el que se describen las medidas que es necesario tomar para evitar una catástrofe ecológica.
  • Domènech, Xavier. Química Ambiental. El impacto ambiental de los residuos. Madrid: Miraguano ediciones, 1997. Libro dirigido a un público amplio, interesado en la problemática ambiental y que posea unas nociones básicas de química.
  • QUÍMICA 6º Edición. Raymond Chang. Ed. McGrawHill