Diferencia entre revisiones de «Transformación de Lorentz»

m (Texto reemplazado: «<div align="justify">» por «»)
 
(No se muestran 2 ediciones intermedias de otro usuario)
Línea 1: Línea 1:
{{Mejorar}}
+
 
{{Normalizar}}
 
 
{{Definición
 
{{Definición
|nombre= Transformación de Lorentz
+
|nombre= Transformación de Lorentz.
 
|imagen=
 
|imagen=
 
|tamaño=
 
|tamaño=
|concepto=Sistema de ecuaciones que permiten transformar las coordenadas de un sistema de referencia a otro. <br/>
+
|concepto=Sistema de ecuaciones que permiten transformar las coordenadas de un sistema de referencia a otro.
 
}}
 
}}
 +
 
'''Transformación de Lorentz'''. Transformación de las coordenadas del espacio y del tiempo, que permite a la descripción de los  fenómenos electromagnéticos pasar de un sistema fijo a otro dotado con  velocidad constante.
 
'''Transformación de Lorentz'''. Transformación de las coordenadas del espacio y del tiempo, que permite a la descripción de los  fenómenos electromagnéticos pasar de un sistema fijo a otro dotado con  velocidad constante.
+
 
 
==Explicación==
 
==Explicación==
 
Supongamos dos sistemas de referencia inerciales A y B donde las escalas de longitud y de tiempo son las mismas. El sistema B se mueve con una velocidad v respecto a A a lo largo de los ejes coincidentes x y X de manera tal que para el instante t=T=0 los orígenes de los ejes de coordenadas se encuentran en el mismo punto.
 
Supongamos dos sistemas de referencia inerciales A y B donde las escalas de longitud y de tiempo son las mismas. El sistema B se mueve con una velocidad v respecto a A a lo largo de los ejes coincidentes x y X de manera tal que para el instante t=T=0 los orígenes de los ejes de coordenadas se encuentran en el mismo punto.
Línea 18: Línea 18:
  
 
[[archivo:Lorentz2.JPG|thumbs|center|Ecuación # 2]]
 
[[archivo:Lorentz2.JPG|thumbs|center|Ecuación # 2]]
Esto se deduce de los postulados de [[Einstein]]
+
Esto se deduce de los postulados de [[Einstein]].
  
Considerando que el [[espacio]] y el [[tiempo]] son homogéneos, suponemos que entre las coordenadas y el tiempo de los diferentes sistemas existe una relación lineal. Luego entre las coordenadas x y X es posible la dependencia siguiente:
+
Considerando que el espacio y el [[tiempo]] son homogéneos, suponemos que entre las coordenadas y el tiempo de los diferentes sistemas existe una relación lineal. Luego entre las coordenadas x y X es posible la dependencia siguiente:
  
 
[[archivo:Lorentz3.JPG|thumbs|center|Ecuación # 3]]
 
[[archivo:Lorentz3.JPG|thumbs|center|Ecuación # 3]]
Línea 44: Línea 44:
  
 
==Fuentes==
 
==Fuentes==
* Strelkov, S. Mecánica. Editorial Mir 1978. Pág 523
+
* Strelkov, S. Mecánica. Editorial Mir, [[1978]]. Pág 523
* Información ofrecida por MSc. José Ramón Ávila Cruz (JC Puerto Padre V)
+
* Entrevista al MSc. José Ramón Ávila Cruz (JC Puerto Padre V)
 
[[Categoría: Física]]
 
[[Categoría: Física]]

última versión al 23:27 18 ago 2019

Transformación de Lorentz.
Información sobre la plantilla
Concepto:Sistema de ecuaciones que permiten transformar las coordenadas de un sistema de referencia a otro.

Transformación de Lorentz. Transformación de las coordenadas del espacio y del tiempo, que permite a la descripción de los fenómenos electromagnéticos pasar de un sistema fijo a otro dotado con velocidad constante.

Explicación

Supongamos dos sistemas de referencia inerciales A y B donde las escalas de longitud y de tiempo son las mismas. El sistema B se mueve con una velocidad v respecto a A a lo largo de los ejes coincidentes x y X de manera tal que para el instante t=T=0 los orígenes de los ejes de coordenadas se encuentran en el mismo punto.

Supongamos, también, que para el instante t=T=0 en el origen de coordenadas se produjo un destello de luz, entonces después de cierto tiempo t en el sistema A la luz alcanzará los puntos que se hayan en la esfera de radio ct, de manera análoga, también en el sistema B al cabo de un tiempo T la luz recorrerá la distancia cT. O sea para el sistema A los puntos de la esfera luminosa satisfarán la ecuación.

Ecuación # 1

Y en el sistema B, la ecuación

Ecuación # 2

Esto se deduce de los postulados de Einstein.

Considerando que el espacio y el tiempo son homogéneos, suponemos que entre las coordenadas y el tiempo de los diferentes sistemas existe una relación lineal. Luego entre las coordenadas x y X es posible la dependencia siguiente:

Ecuación # 3

De esta se desprende de que el punto X=0 (el origen de referencia del sistema B) se mueve con velocidad v respecto al sistema A y en el instante t=T=0 los puntos x=0 y X=0 coinciden. La magnitud gamma es por ahora un coeficiente desconocido que para v mucho menor que c debe hacerse igual a la unidad, como en las transformaciones de Galileo; gamma, por lo visto, es función de v y de c.

Las coordenadas y,Y y z,Z no deben variar durante el movimiento de los sistemas a lo largo del eje x, o

Y = y , Z = z (IV)

Como ocurre también al efectuar la transformación de Galileo.

El tiempo T en el sistema B dependerá linealmente del tiempo t y de la coordenada x en el sistema A; por ello supondremos que:

T = at + bx (V)

Donde a y b son constantes desconocidas que siendo v mucho menor que c, deben tomar los valores: a=1 y b=0.

Sustituyendo III, IV y V en II obtendremos:

Ecuación # 4

Se requiere elegir los valores de los coeficientes gamma, a y b de tal manera que VI sea igual a I. Evidentemente para eso deben satisfacerse las igualdades siguientes

Ecuación # 5

Operando con estas y las ecuaciones anteriores obtenemos los siguientes valores para dichos coeficientes:

Ecuación # 6

De este modo llegamos a la transformación de las coordenadas del sistema A respecto a las del sistema B las cuales se conocen hoy como Transformación de Lorentz.

Ecuación # 7

Fuentes

  • Strelkov, S. Mecánica. Editorial Mir, 1978. Pág 523
  • Entrevista al MSc. José Ramón Ávila Cruz (JC Puerto Padre V)