Diferencia entre revisiones de «Cámara de burbujas»
| Línea 5: | Línea 5: | ||
|tamaño=260px | |tamaño=260px | ||
|descripcion= Es un dispositivo para detectar partículas subatómicas. | |descripcion= Es un dispositivo para detectar partículas subatómicas. | ||
| − | }} | + | }}<div align="justify"> |
| − | <div align="justify"> | + | '''Cámara de Burbujas.'''Es un depósito de líquido a una [[temperatura]] superior que su puntod e ebullición. |
| − | Es un depósito de líquido a una [[temperatura]] superior que su puntod e ebullición. | ||
==Origen== | ==Origen== | ||
Fue inventada en [[1952]] por el físico americano [[Donald A Glaser]] quien en [[1960]],recibió por ello el [[Premio Nóbel de Física]]. | Fue inventada en [[1952]] por el físico americano [[Donald A Glaser]] quien en [[1960]],recibió por ello el [[Premio Nóbel de Física]]. | ||
| + | |||
==Funcionamiento== | ==Funcionamiento== | ||
El líquido se halla bajo presión, con lo cual se impide que hierva. Pero si se disminuye la | El líquido se halla bajo presión, con lo cual se impide que hierva. Pero si se disminuye la | ||
presión, el líquido entra en ebullición y aparecen en él burbujas de vapor. | presión, el líquido entra en ebullición y aparecen en él burbujas de vapor. | ||
Imaginemos que una [[partícula subatómica]], un [[protón]] o un [[mesón]], por ejemplo, se zambulle en el líquido de una cámara de burbujas. Choca contra las moléculas y átomos del líquido y les transfiere una parte de su energía, formándose así una línea de átomos y moléculas de temperatura superior al resto. Si se retira la presión que actúa sobre el líquido, las burbujas de vapor se forman en primer lugar a lo largo de la línea de [[energía]] que ha dejado atrás la [[partícula subatómica]]. El paso de las partículas queda así marcado por un trazo visible de burbujas que se puede fotografiar fácilmente. | Imaginemos que una [[partícula subatómica]], un [[protón]] o un [[mesón]], por ejemplo, se zambulle en el líquido de una cámara de burbujas. Choca contra las moléculas y átomos del líquido y les transfiere una parte de su energía, formándose así una línea de átomos y moléculas de temperatura superior al resto. Si se retira la presión que actúa sobre el líquido, las burbujas de vapor se forman en primer lugar a lo largo de la línea de [[energía]] que ha dejado atrás la [[partícula subatómica]]. El paso de las partículas queda así marcado por un trazo visible de burbujas que se puede fotografiar fácilmente. | ||
| − | == | + | |
| + | ==¿Cómo se obtienen los datos?== | ||
Las partículas capaces de dejar un rastro de burbujas poseen siempre una [[carga eléctrica]], o positiva o negativa. Si la carga es positiva, la trayectoria de la [[partícula]] se curva en una determinada dirección bajo la influencia del [[imán]]; si es negativa, se curva en la dirección contraria. Por la curvatura de la curva puede determinar el físico la [[velocidad]] de la partícula. Con esto, con el espesor de la traza y otros datos, puede determinar también la masa de la [[partícula]]. | Las partículas capaces de dejar un rastro de burbujas poseen siempre una [[carga eléctrica]], o positiva o negativa. Si la carga es positiva, la trayectoria de la [[partícula]] se curva en una determinada dirección bajo la influencia del [[imán]]; si es negativa, se curva en la dirección contraria. Por la curvatura de la curva puede determinar el físico la [[velocidad]] de la partícula. Con esto, con el espesor de la traza y otros datos, puede determinar también la masa de la [[partícula]]. | ||
| − | == | + | |
| + | ==¿Qué hacer cuando no dejan huellas?== | ||
Cuando una [[partícula]] se desintegra en dos o más partículas, la traza se ramifica. También | Cuando una [[partícula]] se desintegra en dos o más partículas, la traza se ramifica. También | ||
aparecen ramales en el caso de una colisión. En las fotografías de una [[cámara]] de burbujas | aparecen ramales en el caso de una colisión. En las fotografías de una [[cámara]] de burbujas | ||
| Línea 24: | Línea 26: | ||
hacer entonces es llenar ese hueco con alguna [[partícula]] sin carga; pues las partículas que | hacer entonces es llenar ese hueco con alguna [[partícula]] sin carga; pues las partículas que | ||
carecen de carga no dejan traza alguna al pasar por una [[cámara]] de burbujas. | carecen de carga no dejan traza alguna al pasar por una [[cámara]] de burbujas. | ||
| + | |||
==Significado para un Físico Nuclear== | ==Significado para un Físico Nuclear== | ||
Para el físico nuclear, la compleja trama de trazos de una fotografía tomada en una [[cámara]] | Para el físico nuclear, la compleja trama de trazos de una fotografía tomada en una [[cámara]] | ||
| Línea 29: | Línea 32: | ||
naturaleza de las trazas puede deducir el físico qué clase de partículas han intervenido o si | naturaleza de las trazas puede deducir el físico qué clase de partículas han intervenido o si | ||
ha encontrado un nuevo tipo de partícula. | ha encontrado un nuevo tipo de partícula. | ||
| + | |||
==Historia== | ==Historia== | ||
La primera cámara de burbujas que construyó [[Glaser]] tenía sólo unas cuantas pulgadas de | La primera cámara de burbujas que construyó [[Glaser]] tenía sólo unas cuantas pulgadas de | ||
| Línea 42: | Línea 46: | ||
*[http://www.lavanguardia.com/vida/20100330/53899257017/el-acelerador-de-particulas-logra-recrear-los-instantes-posteriores-al-big-bang.html/ Acelerador de particulas] | *[http://www.lavanguardia.com/vida/20100330/53899257017/el-acelerador-de-particulas-logra-recrear-los-instantes-posteriores-al-big-bang.html/ Acelerador de particulas] | ||
| − | |||
*[http://www.abc.es/20101108/ciencia/cern-acelerador-particulas-colision-201011081718.html/ Ciencia] | *[http://www.abc.es/20101108/ciencia/cern-acelerador-particulas-colision-201011081718.html/ Ciencia] | ||
| − | |||
*[http://aula2.elmundo.es/aula/laminas/lamina1134988431.pdf/ El mundo] | *[http://aula2.elmundo.es/aula/laminas/lamina1134988431.pdf/ El mundo] | ||
| − | |||
*[http://www.elmundo.es/elmundo/2010/03/22/ciencia/1269274368.html/ El mundo y la Ciencia] | *[http://www.elmundo.es/elmundo/2010/03/22/ciencia/1269274368.html/ El mundo y la Ciencia] | ||
| − | |||
[[Category:Ciencias_Aplicadas_y_Tecnologías]] | [[Category:Ciencias_Aplicadas_y_Tecnologías]] | ||
[[Category:Aparatos_científicos]] | [[Category:Aparatos_científicos]] | ||
[[Category:Física]] | [[Category:Física]] | ||
Revisión del 07:58 12 dic 2011
| ||||
Cámara de Burbujas.Es un depósito de líquido a una temperatura superior que su puntod e ebullición.
Sumario
Origen
Fue inventada en 1952 por el físico americano Donald A Glaser quien en 1960,recibió por ello el Premio Nóbel de Física.
Funcionamiento
El líquido se halla bajo presión, con lo cual se impide que hierva. Pero si se disminuye la presión, el líquido entra en ebullición y aparecen en él burbujas de vapor. Imaginemos que una partícula subatómica, un protón o un mesón, por ejemplo, se zambulle en el líquido de una cámara de burbujas. Choca contra las moléculas y átomos del líquido y les transfiere una parte de su energía, formándose así una línea de átomos y moléculas de temperatura superior al resto. Si se retira la presión que actúa sobre el líquido, las burbujas de vapor se forman en primer lugar a lo largo de la línea de energía que ha dejado atrás la partícula subatómica. El paso de las partículas queda así marcado por un trazo visible de burbujas que se puede fotografiar fácilmente.
¿Cómo se obtienen los datos?
Las partículas capaces de dejar un rastro de burbujas poseen siempre una carga eléctrica, o positiva o negativa. Si la carga es positiva, la trayectoria de la partícula se curva en una determinada dirección bajo la influencia del imán; si es negativa, se curva en la dirección contraria. Por la curvatura de la curva puede determinar el físico la velocidad de la partícula. Con esto, con el espesor de la traza y otros datos, puede determinar también la masa de la partícula.
¿Qué hacer cuando no dejan huellas?
Cuando una partícula se desintegra en dos o más partículas, la traza se ramifica. También aparecen ramales en el caso de una colisión. En las fotografías de una cámara de burbujas aparecen normalmente numerosos trazos que convergen, se separan y se ramifican. Hay veces que entre dos porciones del conjunto de trazas se observa un hueco. Lo que hay que hacer entonces es llenar ese hueco con alguna partícula sin carga; pues las partículas que carecen de carga no dejan traza alguna al pasar por una cámara de burbujas.
Significado para un Físico Nuclear
Para el físico nuclear, la compleja trama de trazos de una fotografía tomada en una cámara de burbujas es tan significativa como los rastros en la nieve para un cazador ducho. De la naturaleza de las trazas puede deducir el físico qué clase de partículas han intervenido o si ha encontrado un nuevo tipo de partícula.
Historia
La primera cámara de burbujas que construyó Glaser tenía sólo unas cuantas pulgadas de diámetro. Hoy día, en cambio, se construyen cámaras enormes de muchos pies de diámetro, que contienen cientos de litros de líquido.
Líquidos en las cámaras de burbujas
Los líquidos que se usan en las cámaras de burbujas pueden ser de varios tipos. Algunos contienen gases nobles licuados, como el xenón o el helio. Otros, gases orgánicos licuados. Pero el líquido más útil para las cámaras de burbujas es el hidrógeno líquido. El hidrógeno está compuesto por los átomos más elementales que se conocen. Cada átomo de hidrógeno consiste en un núcleo constituido por un único protón, alrededor del cual gira un solo electrón. Es decir, el hidrógeno líquido está formado sólo por protones y electrones aislados. Los núcleos atómicos de todos los demás líquidos son conglomerados de varios protones y neutrones. Como consecuencia de lo anterior, los sucesos subatómicos que tienen lugar en el seno del hidrógeno líquido son especialmente simples y tanto más fáciles de deducir a partir de las trazas de burbujas.