Saltar a: navegación, buscar

Glúcidos

(Redirigido desde «Hidratos de carbono»)
Glúcidos
Información sobre la plantilla
Gúcidos.JPG
Concepto:Compuestos formados en su mayor parte por átomos de carbono e hidrógeno y en una menor cantidad de oxígeno.

Glúcidos. Están constituidos por carbono, hidrógeno y oxígeno (a veces tienen N, S, o P). El nombre de glúcido deriva de la palabra "glucosa" que proviene del vocablo griego glykys que significa dulce, aunque solamente lo son algunos monosacáridos y disacáridos.

Su fórmula general suele ser (CH2O)n , donde oxígeno e hidrógeno se encuentran en la misma proporción que en el agua, de ahí su nombre clásico de hidratos de carbono, aunque su composición y propiedades no corresponde en absoluto con esta definición. Son la forma biológica primaria de almacenamiento y consumo de energía.

Otras biomoléculas energéticas son las grasas y, en menor medida, las proteínas.

Estructura química

Los glúcidos son compuestos formados en su mayor parte por átomos de carbono e hidrógeno y en una menor cantidad de oxígeno. Los glúcidos tienen enlaces químicos difíciles de romper llamados covalentes, mismos que poseen gran cantidad de energía, que es liberada al romperse estos enlaces. Una parte de esta energía es aprovechada por el organismo consumidor, y otra parte es almacenada en el organismo. En la naturaleza se encuentran en los seres vivos, formando parte de biomoléculas aisladas o asociadas a otras como las proteínas y los lípidos.

Producción de energía

La principal función de los glúcidos es aportar energía al organismo. De todos los nutrientes que se puedan emplear para obtener energía, los glúcidos son los que producen una combustión más limpia en nuestras células y dejan menos residuos en el organismo.

De hecho, el cerebro y el sistema nervioso solamente utilizan glucosa para obtener energía. De esta manera se evita la presencia de residuos tóxicos (como el amoniaco, que resulta de quemar proteínas) en contacto con las delicadas células del tejido nervioso. La glucosa es el combustible celular por excelencia, oxidándose con oxígeno para dar CO2, H2O y desprendiéndose energía, según la reacción siguiente: C6H1206 + 6O2 6CO2 + 6H2OH = -2870 KJ/mol

Este proceso se realiza en las células a través de un conjunto complejo de reacciones (glucolisis), cuya finalidad es el desprendimiento gradual de energía para poder ser utilizada en otras formas químicas. El rendimiento de la glucolisis es aproximadamente del 42 %.

Los azúcares simples o monosacáridos: glucosa, fructosa y galactosa se absorben en el intestino sin necesidad de digestión previa, por lo que son una fuente muy rápida de energía. Los azúcares complejos deben ser transformados en azúcares sencillos para ser asimilados.

Tipos

Los glúcidos se dividen en monosacáridos, disacáridos, oligosacáridos y polisacáridos.

Monosacáridos

Los glúcidos más simples, los monosacáridos, están formados por una sola molécula; no pueden ser hidrolizados a glúcidos más pequeños. La fórmula química general de un monosacárido no modificado es (CH2O)n, donde n es cualquier número igual o mayor a tres, su límite es de 7 carbonos. Los monosacáridos poseen siempre un grupo carbonilo en uno de sus átomos de carbono y grupos hidroxilo en el resto, por lo que pueden considerarse polialcoholes.

Los monosacáridos se clasifican de acuerdo a tres características diferentes: la posición del grupo carbonilo, el número de átomos de carbono que contiene y su quiralidad. Si el grupo carbonilo es un aldehído, el monosacárido es una aldosa; si el grupo carbonilo es una cetona, el monosacárido es una cetosa.

Los monosacáridos más pequeños son los que poseen tres átomos de carbono, y son llamados triosas; aquellos con cuatro son llamados tetrosas, lo que poseen cinco son llamados pentosas, seis son llamados hexosas y así sucesivamente. Los sistemas de clasificación son frecuentemente combinados; por ejemplo, la glucosa es una aldohexosa (un aldehído de seis átomos de carbono), la ribosa es una aldopentosa (un aldehído de cinco átomos de carbono) y la fructosa es una cetohexosa (una cetona de seis átomos de carbono).

Cada átomo de carbono posee un grupo de hidroxilo (-OH), con la excepción del primero y el último carbono, todos son asimétricos, haciéndolos centros estéricos con dos posibles configuraciones cada uno (el -H y -OH pueden estar a cualquier lado del átomo de carbono). Debido a esta asimetría, cada monosacárido posee un cierto número de isómeros.

La aldohexosa D-glucosa, tienen la fórmula (CH2O)6, de la cual, exceptuando dos de sus seis átomos de carbono, todos son centros quirales, haciendo que la D-glucosa sea uno de los estereoisómeros posibles. En el caso del gliceraldehído, una aldotriosa, existe un par de posibles esteroisómeros, los cuales son enantiómeros y epímeros (1,3-dihidroxiacetona, la cetosa correspondiente, es una molécula simétrica que no posee centros quirales).

La designación D o L es realizada de acuerdo a la orientación del carbono asimétrico más alejados del grupo carbonilo: si el grupo hidroxilo está a la derecha de la molécula es un azúcar D, si está a la izquierda es un azúcar L. Como los D azúcares son los más comunes, usualmente la letra D es omitida.

Disacáridos

Los disacáridos son glúcidos formados por dos moléculas de monosacáridos y, por tanto, al hidrolizarse producen dos monosacáridos libres. Los dos monosacáridos se unen mediante un enlace covalente conocido como enlace glucosídico, tras una reacción de deshidratación que implica la pérdida de un átomo de hidrógeno de un monosacárido y un grupo hidroxilo del otro monosacárido, con la consecuente formación de una molécula de H2O, de manera que la fórmula de los disacáridos no modificados es C12H22O11.

La sacarosa es el disacárido más abundante y la principal forma en la cual los glúcidos son transportados en las plantas. Está compuesto de una molécula de glucosa y una molécula de fructosa. El nombre sistemático de la sacarosa , O-α-D-glucopiranosil-(1→2)- β-D-fructofuranósido, indica cuatro cosas:

  • Sus monosacáridos: Glucosa y fructosa.
  • Disposición de las moleculas en el espacio: La glucosa adopta la forma piranosa y la fructosa una furanosa.
  • Unión de los monosacáridos: El carbono anomérico uno (C1) de α-glucosa está enlazado en alfa al C2 de la fructosa formando 2-O-(alfa-D-glucopiranosil)-beta-D-fructofuranosido y liberando una molécula de agua.
  • El sufijo -ósido indica que el carbono anomérico de ambos monosacáridos participan en el enlace glicosídico.

La lactosa, un disacárido compuesto por una molécula de galactosa y una molécula de glucosa, estará presente naturalmente sólo en la leche. El nombre sistemático para la lactosa es O-β-D-galactopiranosil-(1→4)-D-glucopiranosa. Otro disacárido notable incluyen la maltosa (dos glucosa enlazadas α-1,4) y la celobiosa (dos glucosa enlazadas β-1,4).

Oligosacáridos

Los oligosacáridos están compuestos por tres a diez moléculas de monosacáridos que al hidrolizarse se liberan. No obstante, la definición de cuan largo debe ser un glúcido para ser considerado oligo o polisacárido varía según los autores. Según el número de monosacáridos de la cadena se tienen los disacaridos (como la lactosa), tetrasacárido (estaquiosa), pentasacáridos, etc.

Los oligosacáridos se encuentran con frecuencia unidos a proteínas, formando las glucoproteínas, como una forma común de modificación tras la síntesis proteica. Estas modificaciones post traduccionales incluyen los oligosacáridos de Lewis, responsables por las incompatibilidades de los grupos sanguíneos, el epítopealfa-Gal responsable del rechazo hiperagudo en xenotrasplante y O-GlcNAc modificaciones.

Polisacáridos

Los polisacáridos. Son biomoléculas que se encuadran entre los glúcidos y están formadas por la unión de una gran cantidad de monosacáridos y cumplen funciones diversas, sobre todo de reservas energéticas y estructurales. Los polisacáridos son cadenas, ramificadas o no, de más de diez monosacáridos.

Los polisacáridos son polímeros, cuyos monómeros constituyentes son monosacáridos, los cuales se unen repetitivamente mediante enlaces glucosídicos. Estos compuestos llegan a tener un peso molecular muy elevado, que depende del número de residuos o unidades de monosacáridos que participen en su estructura. Este número es casi siempre indeterminado, variable dentro de unos márgenes, a diferencia de lo que ocurre con biopolímeros informativos, como el ADN o los polipéptidos de las proteínas, que tienen en su cadena un número fijo de piezas, además de una secuencia específica.

Funciones

Las funciones generales de los glúcidos se pueden reducir a dos:

  • Energética (bien como fuente inmediata de energía o como reserva de esta)
  • Estructural (es decir, forman parte de otras moléculas para construir las estructuras celulares o corporales).

Además algunos pueden tener otras funciones más específicas: la vitamina C es un derivado de monosacárido, las gonadotropinas son glucoproteínas que regulan la función de las gónadas, las gomas son secretadas por las plantas como defensa para cerrar sus heridas, la heparina es un anticoagulante natural de la sangre.

Aplicaciones

Los carbohidratos se utilizan para fabricar tejidos, películas fotográficas, plásticos y otros productos. La celulosa se puede convertir en rayón de viscosa y productos de papel. El nitrato de celulosa (nitrocelulosa) se utiliza en películas de cine, cemento, pólvora de algodón, celuloide y tipos similares de plásticos.

El almidón y la pectina, un agente cuajante, se usan en la preparación de alimentos para el hombre y el ganado. La goma arábiga se usa en medicamentos demulcentes. El agar, un componente de algunos laxantes, se utiliza como agente espesante en los alimentos y como medio para el cultivo bacteriano; también en la preparación de materiales adhesivos, de encolado y emulsiones.

La hemicelulosa se emplea para modificar el papel durante su fabricación. Los dextranos son polisacáridos utilizados en medicina como expansores de volumen del plasma sanguíneo para contrarrestar las conmociones agudas. Otro hidrato de carbono, el sulfato de heparina, es un anticoagulante de la sangre.

Véase también

Fuentes