Reacción endotérmica

Revisión del 08:41 8 abr 2013 de Esperanza11011jc (discusión | contribuciones)
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)
Reacción endotérmica
Información sobre la plantilla
Reaccion-endoterminca.jpg
Concepto:Las reacciones endotérmicas son aquellas que absorben energía en forma de calor.En las reacciones endotérmicas los productos tienen más energía que los reactivos.

Reacción endotérmica. Son aquellas que absorben energía en forma de calor. Una vez que la energía total se conserva del primer para el segundo miembro de cualquier reacción química, si una reacción es endotérmica, la entalpía de los productos Hp es mayor que la entalpía de los reactivos Hr , pues una determinada cantidad de energía fue absorbida por los reactivos en forma de calor, durante la reacción, quedando contenida en los productos. Siendo que en la reacción endotérmica: Hp > Hr.

Y siendo DH = Hp — Hr , entonces en la reacción endotérmica el valor de ΔH será siempre positivo. Siendo que en la reacción endotérmica: ΔH > 0.

La reacción produce nitrato de bario, amoníaco y agua… y absorbe gran cantidad de calor, tanto que congela la capa de agua que queda sobre la madera y la “pega” al matraz. Ba(OH)2.8H2O + 2 NH4NO3 → Ba (NO3)2 + 2 NH3 + 10 H2O ∆H= 80,3 KJ. En esta reacción hay un gran aumento de entropía: pasamos de 3 moles a 13 moles y de sustancias en fase sólida a sustancias en disolución. Este aumento de entropía hace que el proceso sea espontáneo, aunque la variación de entalpía del proceso no sea favorable. La espontaneidad de una reacción química viene dada por la variación de la energía libre de Gibbs. Las reacciones endotérmicas, sobre todo las del amoníaco impulsaron una próspera industria de generación de hielo a principios del siglo XIX.

Ejemplo de Reacción Endotérmica

Un ejemplo de reacción endotérmica es la producción del ozono (O3). Esta reacción ocurre en las capas altas de la atmósfera, donde las radiaciones ultravioleta proveen la energía del Sol. También ocurre cerca de descargas eléctricas (cuando se producen tormentas eléctricas):

3 O2 + ENERGÍA® 2 O3 ; DH > 0

La energía se conserva durante las reacciones químicas. En una reacción pueden considerarse dos fases diferenciadas: en primer lugar, los enlaces químicos de los reactivos se rompen, y luego se reordenan constituyendo nuevos enlaces. En esta operación se requiere cierta cantidad de energía, que será liberada si el enlace roto vuelve a formarse. Los enlaces químicos con alta energía se conocen como enlaces `fuertes', pues precisan un esfuerzo mayor para romperse.

Si en el producto se forman enlaces más fuertes que los que se rompen en el reactivo, se libera energía en forma de calor, constituyendo una reacción exotérmica. En caso contrario, la energía es absorbida y la reacción se denomina endotérmica. Debido a que los enlaces fuertes se crean con más facilidad que los débiles, son más frecuentes las reacciones exotérmicas espontáneas; un ejemplo de ello es la combustión de los compuestos del carbono en el aire para producir CO2 y H2O, que tienen enlaces fuertes. Pero también se producen reacciones endotérmicas espontáneas, como la disolución de sal en agua.

Las reacciones endotérmicas suelen estar asociadas a la disociación de las moléculas. Esto último puede medirse por el incremento de la entropía del sistema. El efecto neto de la tendencia a formar enlaces fuertes y la tendencia de las moléculas e iones a disociarse se puede medir por el cambio en la energía libre del sistema. Todo cambio espontáneo a temperatura y presión constantes implica un incremento de la energía libre, acompañado de un aumento de la fuerza del enlace.

Una reacción química es el proceso en el que una o más sustancias se transforman en otras sustancias diferentes —los productos de la reacción. Un ejemplo de reacción química es la formación de óxido de hierro producida al reaccionar el oxígeno del aire con el hierro.

Productos obtenidos

Los productos obtenidos a partir de ciertos tipos de reactivos dependen de las condiciones bajo las que se da la reacción química. No obstante, tras un estudio cuidadoso se comprueba que, aunque los productos pueden variar según cambien las condiciones, determinadas cantidades permanecen constantes en cualquier reacción química. Estas cantidades constantes, que reciben el nombre de magnitudes conservadas, incluyen el número de cada tipo de átomo presente, la carga eléctrica y la masa total.

Combustión

En algunos casos, como en la combustión, las reacciones se producen de forma rápida. Otras reacciones, como la oxidación, tienen lugar con lentitud. La cinética química, que estudia la velocidad de las reacciones, contempla tres condiciones que deben darse a nivel molecular para que tenga lugar una reacción química: las moléculas deben colisionar, han de estar situadas de modo que los grupos que van a reaccionar se encuentren juntos en un estado de transición entre los reactivos y los productos, y la colisión debe tener energía suficiente para crear el estado de transición y transformarlo en productos.

Las reacciones rápidas se dan cuando estas tres condiciones se cumplen con facilidad. Sin embargo, si uno de los factores presenta cierta dificultad, la reacción resulta especialmente lenta.

Velocidad de la reacción

La velocidad de la reacción aumenta en presencia de un catalizador, una sustancia que no resulta alterada o se regenera, por lo que el proceso continúa. La mezcla de gases hidrógeno y oxígeno a temperatura ambiente no explota, pero si se añade platino en polvo la mezcla explosiona al cubrirse la superficie del platino con el oxígeno absorbido. Los átomos de platino alargan los enlaces de las moléculas de O2, debilitándolos y rebajando la energía de activación. Los átomos de oxígeno reaccionan rápidamente con moléculas de hidrógeno, colisionando contra ellas y formando agua y regenerando el catalizador. Las fases por las que pasa una reacción constituyen el `mecanismo de reacción'.

La velocidad de la reacción puede modificarse no sólo con catalizadores, sino también mediante cambios en la temperatura y en las concentraciones. Al elevar la temperatura se incrementa la velocidad a causa del aumento de la energía cinética de las moléculas de los reactivos, lo que provoca un mayor número de colisiones por segundo y hace posible la formación de estados de transición. Con el aumento de la concentración se consigue incrementar la velocidad de la reacción, al aumentar el número y la velocidad de las colisiones moleculares.

Fuente