Diferencia entre revisiones de «Metales de transición»
(→Bibliografía) |
|||
| Línea 65: | Línea 65: | ||
*[http:www.iupac.org International Union of Pure and Applied Chemistry] | *[http:www.iupac.org International Union of Pure and Applied Chemistry] | ||
| − | *Cotton, F. Albert; Wilkinson, G.; Murillo, C. A. (1999). Advanced Inorganic Chemistry (6th ed.). New York: Wiley. ISBN 0-471-19957-5 | + | *Cotton, F. Albert; Wilkinson, G.; Murillo, C. A. (1999). Advanced Inorganic Chemistry (6th ed.). New York: Wiley. ISBN 0-471-19957-5 |
| − | *Matsumoto, Paul S. Trends in Ionization Energy of Transition-Metal Elements J. Chem. Educ. 2005 82, 1660. | + | *Matsumoto, Paul S. Trends in Ionization Energy of Transition-Metal Elements J. Chem. Educ. 2005 82, 1660. |
| + | |||
| + | |||
[[Category:Ciencias_Naturales_y_Exactas]] [[Category:Química]] [[Category:Química_inorgánica]] [[Category:Metales]] | [[Category:Ciencias_Naturales_y_Exactas]] [[Category:Química]] [[Category:Química_inorgánica]] [[Category:Metales]] | ||
Revisión del 08:15 30 abr 2011
| ||||
Sumario
Elementos
Propiedades
Casi todos son metales típicos, de elevada dureza, con puntos de fusión y ebullición altos, buenos conductores tanto del calor como de la electricidad. Muchas de las propiedades de los metales de transición se deben a la capacidad de los electrones del orbital d de localizarse dentro de la red metálica. En metales, cuanto más electrones compartan un núcleo, más fuerte es el metal. Poseen una gran versatilidad de estados de oxidación, pudiendo alcanzar una carga positiva tan alta como la de su grupo, e incluso en ocasiones negativa (Como en algunos complejos de coordinación).
- Sus combinaciones son fuertemente coloreadas y paramagnéticas
- Sus potenciales normales suelen ser menos negativos que los de los metales representativos, estando entre ellos los llamados metales nobles.
- Pueden formar aleaciones entre ellos.
- Son en general buenos catalizadores.
- Son sólidos a temperatura ambiente (excepto el mercurio)
- Forman complejos iónicos.
Estados de oxidación variables
A diferencia de los metales de los grupos 1 y 2, los iones de los elementos de transición pueden tener múltiples estados de oxidación estables ya que pueden perder electrones d sin un gran sacrificio energético. El manganeso, por ejemplo tiene dos electrones 4s y cinco 3d que pueden ser eliminados. La pérdida de todos estos electrones lleva a un estado de oxidación +7. El osmio y el rutenio se encuentran comúnmente solos en un estado de oxidación +8 muy estable el cual es uno de los más elevados para compuestos aislados.
Ciertos patrones en los estados de oxidación surgen a través de los periodos de los elementos de transición:
- El número de estados de oxidación aumenta para cada ion hasta el Mn, a partir del cual comienza a disminuir. Los últimos metales de transición tienen una mayor atracción entre protones y electrones (ya que hay más de cada uno presentes), lo que requeriría más energía para eliminar los electrones.
- Cuando los elementos están en estados de oxidación bajos, se pueden encontrar como iones simples. Sin embargo, los metales de transición en estados de oxidación elevados se encuentran generalmente unidos covalentemente a elementos electronegativos como oxígeno o flúor formando iones poliatómicos como el cromato, vanadato, o permanganato.
Otras propiedades con respecto a la estabilidad de los estados de oxidación:
- Iones en elevados estados de oxidación tienden a ser buenos agentes oxidantes, mientras que elementos en bajos estados de oxidación tienden a ser buenos agentes reductores.
- Iones 2+ a través del periodo comienzan como fuertes reductores y se vuelven más estables.
- Iones 3+ comienzan estables y se vuelven más oxidantes a través del periodo.
Actividad catalítica
Los metales de transición forman buenos catalizadores homogéneos y heterogéneos, por ejemplo el hierro es el catalizador para el proceso de Haber y tanto el níquel como el platino son utilizados para la hidrogenación de alquenos. Esto es porque son capaces de reaccionar bajo numerosos estados de oxidación y como consecuencia de ello formar nuevos compuestos proveyendo una ruta de reacción alternativa con una energía de activación más baja.
Compuestos coloreados
Debido a su estructura, los metales de transición forman muchos iones y complejos coloreados. Los colores pueden cambiar entre diferentes iones de un mismo elemento. Por ejemplo el MnO4− (Mn en el estado de oxidación 7+) es un compuesto violeta, mientras que Mn2+ es rosado pálido.
La coordinación por ligandos puede jugar su parte en determinar el color en un compuesto de transición debido a cambios en la energía de los orbitales d. Los ligandos eliminan la degeneración de los orbitales y los dividen en grupos de alta y baja energía. La diferencia de energía entre los orbitales de alta y baja energía determinará el color de la luz que es absorbida, ya que la radiación electromagnética se absorbe si tiene una energía que se corresponda con esta diferencia. Cuando un ion con ligandos absorbe luz algunos electrones son promovidos a un orbital de mayor energía. Si la luz absorbida es de diferente frecuencia, se observan diferentes colores.
El color de un complejo depende de:
- la naturaleza del ion metálico, particularmente el número de electrones en los orbitales d
- el orden de los ligandos alrededor del ion metálico (por ejemplo, diferentes isómeros geométricos pueden mostrar diferentes colores)
- la naturaleza de los ligandos rodeando al ion metálico. Si los ligandos son más fuertes, es mayor la diferencia de energía entre los grupos 3d.
El complejo formado por el elemento zinc del bloque d (aunque no es estrictamente un elemento de transición) es incoloro, porque los orbitales 3d están completos y los electrones no son capaces de desplazarse al grupo superior.
Véase también
- Elementos del bloque d
- Tabla periódica de los elementos.
Bibliografía
- [http:www.iupac.org International Union of Pure and Applied Chemistry]
- Cotton, F. Albert; Wilkinson, G.; Murillo, C. A. (1999). Advanced Inorganic Chemistry (6th ed.). New York: Wiley. ISBN 0-471-19957-5
- Matsumoto, Paul S. Trends in Ionization Energy of Transition-Metal Elements J. Chem. Educ. 2005 82, 1660.