Principio del palomar

Revisión del 10:27 9 feb 2010 de Ruben fmat (discusión | contribuciones) (Página creada con '==  Principio del palomar == El principio del palomar, también llamado principio de Dirichlet, establece que si n palomas se distribuyen en m palomares, y si n &gt…')
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)

 Principio del palomar

El principio del palomar, también llamado principio de Dirichlet, establece que si n palomas se distribuyen en m palomares, y si n > m, entonces al menos habrá un palomar con más de una paloma. Otra forma de decirlo es que m huecos pueden albergar como mucho m objetos si cada uno de los objetos está en un hueco distinto, así que el hecho de añadir otro objeto fuerza a volver a utilizar alguno de los huecos. De otra manera: si se toman trece personas, al menos dos habrán nacido el mismo mes.
El primer enunciado del principio se cree que proviene de Dirichlet en 1834 con el nombre de Schubfachprinzip ("principio de los cajones"). No debe confundirse con otro principio sobre funciones armónicas, también con el nombre de este autor.
Principio de distribución, del palomar o del cajón de Dirichlet. Sean m, n y p tres números naturales. Si se desean colocar np + m objetos en n cajas, alguna caja debe contener al menos p + 1 objetos.
Demostración. Si cada caja contiene como mucho p objetos, el número total de objetos que podemos colocar es np < np + 1 ≤ np + m.
En su versión más simple, este principio dice que no puede existir una aplicación inyectiva entre un conjunto de m elementos y otro de n elementos, si m > n. Equivalentemente, si se desean colocar m objetos en n cajas, con m > n, al menos una caja debe contener al menos 2 objetos.
Aunque el principio del palomar puede parecer una observación trivial, se puede utilizar para demostrar resultados inesperados. Por ejemplo, hay por lo menos 2 personas en La Habana con el mismo número de pelos en la cabeza. Demostración: la cabeza de una persona tiene en torno a 750.000 cabellos y tener un millón de pelos requeriría de una cabeza gigante (nadie tiene un millón de pelos en al cabeza). Asignamos un palomar por cada número de 0 a 1.000.000 y asignamos una paloma a cada persona que irá al palomar correspondiente al número de pelos que tiene en la cabeza. Como en La Habana hay más de un millón de personas, habrá al menos dos personas con el mismo número de pelos en la cabeza.
Una versión generalizada de este principio dice que, si n objetos discretos deben guardarse en m cajas, al menos una caja debe contener no menos de T(n/m) objetos, donde T denota la función techo.