Ecuaciones paramétricas
| ||
Ecuaciones paramétricas. En el caso de una función real de una variable real, y =f(x), en algunos casos es preferible, tratándose del par ordenado (x,y) , expresar cada una de las coordenadas como una función; esto es x= g(t) , y = h(t). De tal manera que a t se le denomina parámetro' y al sistema formado por x= g(t) , y = h(t) se denomina ecuaciones paramétricas.de la función. Extendiendo este concepto para el caso de curvas se puede hablar que las ecuaciones x= g(t) , y = h(t) definen una curva recorriendo algún intervalo de números reales.
Ejemplos
- Las ecuaciones paramétricas x = 2t-5, y = 4t - 7, que corresponden a la recta de ecuación y=2x+3.
- Las de la cicloide son x = a(t-sent), y = a( 1-cost); siendo a el radio de la circunferencia rodante sin resbalamiento por una recta horizontal; t el ángulo central de la circunferencia , cuyo uno de los lados pasa por un punto de la cicloide y el otro, por el punto de contacto de la circunferencia con la recta donde rueda.
En el espacio
En el espacio R3 cada punto de una curva se puede definir por un sistema de tres ecuaciones x= x(t), y = y(t), z= z(t).
- Como ejemplo , la hélice circular tiene l estas ecuaciones paramétricas x = a cos t, y = a sen t, z = bt
Para describir una superficie en el espacio R3 se emplean dos parámetros.: s, t. y el correspondiente sistema de tres ecuaciones paramétricas es x = x(s,t), y = y(s,t), z = z(s,t), resolviendo para s y t el sistema formado por las dos primeras ecuaciones y reemplazando en la ecuación z= z(s,t) se puede obtener z= f(x,y) o bien F(x,y,z) = 0
Por ejemplo para la esfera, el sistema de ecuaciones paramétricas es x = a cos s sent, y = asen s sen t , z = a cos t.
Se aplica en el estudio de la curvatura, radio de curvatura de una curva plana, la curvatura y la torsión de una curva en el espacio; plano tangente de una superficie., etc. y da motiva a la llamada derivación de ecuaciones paramétricas con resultados peculiares.
Fuentes
- Manual de matemáticas de Bronshtein y Semendiaaev
- Curso breve de Geometría Analítica de Efímov.
- Calculo Diferencial e Integral de Piskunov, tomo I.

