Integración por parte
| ||||||
Integración por parte. El método de integración por partes permite calcular la integral de un producto de dos funciones aplicando la fórmula:
∫ f(x) g'(x)dx = f(x) g(x) − ∫ f'(x) g(x)dx
Definición
Existen varios métodos de integración,consistiendo todos ellos en reducir la integral buscada a una integralya conocida, como por ejemplo una de las de la tabla, ó bien reducirlaa una integral más sencilla.
El método de integración por partes está basado en la derivada de un producto de funciones como se muestra a continuación
d(u·v) = u dv + v du
por eso es que se usa para integrales que contienen dos funciones que se multiplican entre si.
∫d(u·v) = ∫u dv + ∫v du (se integra en ambos lados de la fórmula)
(u·v) = ∫u dv + ∫v du (resolviendo la integral)
∫u dv = u·v - ∫v du (despejando, queda la fórmula de la integración por partes)
Se llama integración por partes, porque la integral se divide en dos partes una u y otra dv. La integral debe estar completa y sin alterar la operación dentro de ella. Esta selección es lo más importante y se debe realizar de la siguiente manera
1.- En la parte que corresponde a dv debe ser la función más fácil de integrar, 2.- En u deben ir aquellas funciones que no tienen integral directa (funciones logarítmicas e inversas), luego se pueden considerar las funciones algebraicas puesto que la derivada es reductiva. Las funciones trigonométricas y exponenciales son más sencillas de trabajar.
Ejemplos
Ejemplo 1
Integral de f(x) = x cos(x)
Resolución:
Sea v' = cos(x). Entonces, v se obtiene integrando:
Sea u = x. Derivando, u' = 1.
Aplicando la fórmula,
Ejemplo 2
Integral de f(x) = ln(x).
Resolución:
Sean u = ln(x) y v' = 1. Derivando e integrando, respectivamente, se obtiene u' = 1/x y v = x. Como f(x) = u·v', aplicando la fórmula de integración por partes, se tiene que la integral de f(x) es x·ln(x) - x + C.


