Funciones trigonométricas
| ||||||
Funciones trigonométricas, relaciones no angulares que se utilizan para relacionar los ángulos del triángulo con las longitudes de los lados del mismo
Historia
El estudio de las funciones trigonométricas se remonta a la época de Babilonia, y gran parte de los fundamentos de trigonometría fueron desarrollados por los matemáticos de la Antigua Grecia, de la India y estudiosos musulmanes. El primer uso de la función seno (sin(·)) aparece en el Sulba Sutras escrito en India del siglo VIII al VI a. C. Las funciones trigonométricas fueron estudiadas por Hiparco de Nicea (180-125 a. C.), Aryabhata (476-550), Varahamihira, Brahmagupta, al-Khwarizmi, Abu'l-Wafa, Omar Khayyam, Bhaskara II, Nasir al-Din Tusi, Regiomontanus (1464), Ghiyath al-Kashi y Ulugh Beg (Siglo XIV), Madhava (ca. 1400), Rheticus, y el alumno de éste, Valentin Otho. La obra de Leonhard Euler Introductio in analysin infinitorum (1748) fue la que estableció el tratamiento analítico de las funciones trigonométricas en Europa, definiéndolas como series infinitas presentadas en las llamadas "Fórmulas de Euler". La noción de que debería existir alguna correspondencia estándar entre la longitud de los lados de un triángulo siguió a la idea de que triángulos similares mantienen la misma proporción entre sus lados. Esto es, que para cualquier triángulo semejante, la relación entre la hipotenusa y otro de sus lados es constante. Si la hipotenusa es el doble de larga, así serán los catetos. Justamente estas proporciones son las que expresan las funciones trigonométricas.
Conceptos básicos
Existen seis funciones trigonométricas básicas. Las últimas cuatro, se definen en relación de las dos primeras funciones, aunque se pueden definir geométricamente o por medio de sus relaciones.
[[Image:
Demostraciones
El Teorema de Pitágoras es de los que cuentan con un mayor número de demostraciones diferentes, utilizando métodos muy diversos. Las demostraciones están divididas en cuatro grandes grupos: las algebraicas, donde se relacionan los lados y segmentos del triángulo; geométricas, en las que se realizan comparaciones de áreas; dinámicas a través de las propiedades de fuerza, masa; y las cuaterniónicas.
Fuentes
- Geometría en Kalipedia.com Consultado 30 septiembre de 2010


