El entrenamiento en altura
| ||||||
Adaptaciones que se producen en el entrenamiento en altura: La mayoría de los autores coincide en que durante estancias muy prolongadas en altitud hay una pérdida de masa corporal, sobre todo por encima de los 5000 metros.
Sumario
- 1 Introducción
- 2 Masa muscular
- 3 Mitocondrias
- 4 Mioglobina
- 5 Capilares
- 6 Utilización de sustratos
- 7 Metabolismo glucolítico
- 8 Metabolismo oxidativa
- 9 Capacidad tampón (buffer)
- 10 Energética del metabolismo muscular en altura
- 11 Valoración de los efectos posteriores a la altitud.
- 12 Adaptaciones hematológicas.
- 13 Adaptaciones respiratorias
- 14 Adaptaciones metabólicas
- 15 Máxima performance en altitud y fatiga muscular.
- 16 Fuentes
Introducción
Durante el ejercicio exhaustivo en altura se ha encontrado que los sustratos de nucleótidos de adenina fueron menos repletados y hay una menor degradación de glucógeno. Mientras tanto un elevado pH intramuscular, y bajas concentraciones de lactato en músculo y sangre se encontraron en sujetos aclimatados.
Masa muscular
La mayoría de los autores coincide en que durante estancias muy prolongadas en altitud hay una pérdida de masa corporal, sobre todo por encima de los 5000 metros. Existen pocos estudios al respecto. Sin embargo, en estudios llevados a cabo a 5050 metros por B. Kayser encontraron que la hipertrofia muscular en flexores del codo era 2/3 de la del nivel del mar, así parece ser que la hipoxia crónica reduce el potencial para la hipertrofia del músculo esquelético humano. Probablemente este efecto se deba a alteraciones hormonales como la disminución de los valores de insulina. Si bien la hormona del crecimiento aumenta durante el ejercicio en hipoxia aguda, la acción sobre el músculo esquelético es probablemente mediada por el factor de crecimiento insulínico. Por otro lado en altitudes de 2000 metros la masa muscular no sufre efectos importantes. Grosor de fibras: Después de estancias superiores a los 4000 metros se aprecia una reducción del tamaño de las fibras musculares, principalmente debido a la pérdida de proteínas miofibrilares. Aún no se ha podido diferenciar si esto se debe al efecto de la hipóxia o a la atrofia fisiológica debido a la menor cantidad de la actividad física y/o nutricional.
Mitocondrias
Los estudios en los que se ha valorado la cantidad (volumen) de mitocondrias en el músculo, después de estancias en altura, muestran datos muy contradictorios; en algunos de ellos se aprecia un mayor número de mitocondrias pero de menor tamaño. Otros autores han mostrado aumentos en la cantidad de proteínas mitocondriales o en el volumen relativo, evidenciando una posible activación de las estructuras responsables del metabolismo aeróbico. Por contraposición a esos resultados, estudios recientes, pero realizados tras estancias superiores a 6000 metros, muestran disminución en el volumen total de mitocondrias musculares de casi un 20%.
La divergencia entre estos estudios (algunos de ellos realizados por los mismos autores, con la misma metodología) solo es explicable por las diferentes altitudes utilizadas y por la influencia del ejercicio físico y de una nutrición incorrecta.
Mioglobina
La mioglobina realiza una importante función en la fibra muscular, facilitando el transporte de oxígeno del capilar a la mitocondria y además como almacén de O2 . También podría tener la función de matener suficientemente baja la presión intracelular de O2 para facilitar el gradiente de difusión del oxigeno capilar al interior de la célula. En el músculo humano los datos son muy escasos, aunque parecen indicar que las personas que nacen en altura, las concentraciones de mioglobina son mayores, mientras que las que realizan un período de aclimatación en altitud, en algunos casos aumenta y en otros no. Algunos estudios encontraron después de un período de entrenamiento intensivo, una disminución de la mioglobina en deportistas de élite, mientras que en situaciones de altitud, cuando el estímulo de hipóxia es suficientemente intenso, se producen en el músculo entrenado aumentos significativos en la concentración de mioglobina.
Capilares
Los estudios llevados a cabo en alturas moderadas muestran una clara tendencia a que aumente la densidad capilar en el músculo, se discute si hay un aumento de la densidad capilar o si se debe a la disminución del tamaño de la fibra muscular. En este último caso mejora la distancia de difusión de los nutrientes.
Utilización de sustratos
En los pocos estudios realizados en seres humanos, se ha observado que durante el ejercicio submáximo en exposición aguda hay un aumento en la movilización de ácidos grasos libres y de su metabolismo. También se observó que después de un período de aclimatación de 18 días a 4300 metros (altitud elevada) , los niveles de ácidos grasos libres en reposo eran tres veces superiores a los de nivel del mar, y que realizando ejercicio submáximo, al 85% del VO2 máx. la deplección de glucógeno era mayor, lo que evidenciaba una mayor utilización de grasas. Este aumento en la movilización de ácidos grasos puede atribuirse al incremento de catecolaminas.
Metabolismo glucolítico
Cuando se estudiaron las actividades de las enzimas glucolíticas en animales no se encontraron cambios con respecto a nivel del mar. Sin embargo cuando se estudiaron en seres humanos se observaron grandes discrepancias. En estudios a 2300 metros con deportistas de élite, con grupo control mostraron una disminución de enzimas glucolíticas (PFK y LDH) en el grupo que enctrenaba en altitud.
Metabolismo oxidativa
En el estudio mencionado anteriormente se abservó un aumento significativo de las enzimas oxidativas. Cuando se utilizó un modelo de ejercicio con una sola pierna, utilizando la otra como control, para poder realizar la misma intensidad y volumen de entrenamiento en valores absolutos, en altitud y a nivel del mar durante cuatro semanas, las piernas que entrenaron a nvel del mar aumentaron sus enzimas oxidativas, pero las que entrenaron en altura aumentaron significativamente mayor.
Capacidad tampón (buffer)
Mizuno et. al. (1990) realizaron un estudio de esta capacidad en relación a la altitud; en el se ha comprobado que después de un período de entrenamiento en altitud moderada de 2500 - 3000 metros, un grupo de esquiadores de fondo, de alto nivel, mostraron un VO2 máx. Estable en diferentes tests. Sin embargo, encontraron que el déficit maximo de O2 se había incrementado y esto reflejaba mejor rendimiento en carreras cortas. Biopsias musculares mostraron una capacidad buffer incrementada en el tejido muscular y dicha mejora se correlacionaba con una mejora de la capacidad anaeróbica glucolítica.
Energética del metabolismo muscular en altura
El costo neto de energía de la contracción muscular no cambia en la exposición aguda o crónica (Carretelli 1980). Por lo tanto, la eficiencia mecánica del ejercicio, por ejemplo ciclismo, remo, es la misma. La energía necesaria para ejercicios de resistencia es esencialmente derivada del metabolismo aeróbico. Una disminución de la fracción inspirada de O2 (PIO2) lleva a un decremento de la capacidad aeróbica máxima (VO2 máx). La relación entre PIO2 y el % del VO2 a nivel del mar no es lineal, teóricamente refleja la forma de la curva de disociación del oxígeno (Ferreti 1990). Esto podría explicar porque atletas desataran más que los sedentarios (Powers et. al. 1988), por lo que experimentan una mayor caída en el VO2 máx. cuando ejercitan en hipóxia. Otros estudios describen una mejora en la eficiencia mecánica en la carrera luego de 20 días de entrenamiento en altitudes moderadas.
Valoración de los efectos posteriores a la altitud.
Consumo máximo de oxigeno: Es difícil hacer una valoración exacta pero algunos autores opinan que la altitud tiene un efecto más positivo en los deportistas con valores más bajos de VO2 máx lo cual es lógico pues cuando se tienen valores elevados de VO2 es más difícil mejorarlo.
Adaptaciones hematológicas.
El aumento de 2,3-DPG desaparece rápidamente al regresar al nivel del mar. Al regresar de un período de estancia en altitud se observa un aumento en los valores de glóbulos rojos y hemoglobina en sangre así como un volumen plasmático disminuido. El aumento de glóbulos rojos podría ser una ventaja para el transporte de oxígeno al músculo, sobre todo cuando el gasto cardíaco regrese a valores normales (3 a 5 días del retorno al nivel del mar).
Las mejoras claras de los niveles de eritropoyetina se han observado a partir de los 3000 metros, aunque efectos practicos en altitudes como la de ciudad de México (2300 metros) se observan niveles elevados de glóbulos rojos en sus habitantes. Hay que tener en cuenta que solo el riñón nota los niveles de PO2 normalizado; se disminuye la producción de eritropoyetina y la fabricación de GR, con lo que en un período corto (No se sabe con exactitud) el deportista vuelve a sus niveles de pre - altitud. Algunos autores consideran que el hematocrito no aumenta debido al aumento de GR, sino por la disminución del volúmen plasmático y que, para que aumente claramente la hemoglobina se necesitan de 3 a 4 semanas de estancia en altitud. No se conoce con exactitud la duración de las mejoras a nivel hematológico a la vuelta a nivel del mar.
Adaptaciones respiratorias
La hiperventilación que se observa a grandes alturas continúa varias semanas después del retorno a nivel del mar, aunque en un primer momento al perderse el estímulo de la hipoxia en los quimioreceptores periféricos, se reduce la ventilación. Esta disminución de la ventilación hará que aumente la PCO2 por encima de los valores anteriores; el aumento en la PCO2 elevará los niveles de CO2 en el líquido cefaloraquídeo, lo cual bajará el pH y estimulará los quimioreceptores centrales y aumentará la ventilación. Por ello, la hiperventilación continua varias semanas después de la vuelta a nivel del mar, hasta que los valores de bicarbonato del LCR vuelven a la normalidad. Si bien no parece que el aumento de la ventilación máxima puede influir en los valores del VO2 max, ya que la ventilación no se considera un factor limitante, algunos autores consideran que podría ser beneficiosa en algunos deportes.
Adaptaciones metabólicas
Uno de los factores principales para el rendimiento aeróbico y el metabolismo energético, es la mayor o menor densidad capilar en el músculo. Se conoce que la exposición a la hipoxia favorece la proliferación de capilares musculares; también es un hecho conocido que el entrenamiento de resistencia también produce esos cambios; está por verificarse todavía si ambos estímulos en deportistas de alto nivel, se potencian o no. En estudios bien controlados se observa una tendencia al aumento de la densidad capilar.
Otro de los factores fundamentales para el metabolismo energético muscular es la actividad de las encimas oxidativas. Teniendo en cuenta los pocos datos disponibles hasta la fecha, se podría concluir en forma preliminar que el entrenamiento en altitud es beneficioso para el metabolismo oxidativo muscular y el rendimiento aeróbico siempre que se mantengan los mismos niveles de entrenamiento. En caso contrario, dicho entrenamiento será negativo, por lo que, cuando no sea totalmente seguro que en altitud se van a poder mantener las mismas cantidades de entrenamiento que se harían a nivel del mar, es preferible no entrenar en altitud buscando una mejora aeróbica. Este comportamiento diferenciado del metabolismo aeróbico podría explicar los contradictorios resultados en el consumo máximo de oxígeno que se obtienen, algunas veces, a la vuelta de períodos de entrenamiento en altitud.
El otro gran componente del metabolismo energético muscular son las enzimas de la vía anaeróbia. Desde un punto de vista teórico, cuando se quiere entrenar de una manera anaeróbica, este entrenamiento se verá favorecido por la altitud, debido a la hipoxia que ello implica. En varios estudios en lo que se valoró el rendimiento en pruebas de gran componente anaeróbio se observaron mejoras después de estancias en altitud en la que se realizó un entrenamiento de tipo anaeróbio. Estas mejoras no pueden achacarse a mayor cantidad de fosfatos de alta energía, ni a una mayor actividad de enzimas glucolíticas (Aumentan en estadías prolongadas a gran altitud). La tercera causa que puede ser atirbuible a una mayor capacidad tampón del músculo esquelético. Un estudio realizado al respecto en músculo humano ha mostrado una mejora en el rendimiento anaeróbio.
Estudios realizados en los altiplanos de Kenia abren también nuevas perspectivas, pues orientan sobre la idea de que el entrenamiento en altitud puede mejorar los valores de déficit acumulado de oxígeno, lo que implica mejora de la capacidad anaeróbia. También parece que disminuye la producción de amoníaco en el músculo en ejercicio, o aumentan su aclaración.
En resumen, el entrenamiento en altitudes moderadas puede tener un efecto beneficioso en el metabolismo muscular, pero teniendo en cuenta que hay que mantener unos niveles de entrenamiento similares en intensidad y volumen a los que se realizarían a nivel del mar, hay que enfocar el entrenamiento para mejora un solo componente metabólico, hay que planificar en que momento o momentos de la temporada se realiza y hay que individualizar las cargas de entrenamiento. Además debido a la respuesta tan individualizada de los deportistas a la altitud, es conveniente realizar una estancia previa en altitud para valorar esas respuestas.
Máxima performance en altitud y fatiga muscular.
Como es bien sabido, la intensidad del ejercicio máximo involucrando grandes grupos musculares decrece en la altitud. Esta reducción en la potencia máxima es mayor a mayor altitud, y no parece ser influenciada por la aclimatación (Cerretelli, 1980; Ward, et. al. 1990). Por lo contrario, durante el curso de la aclimatación la máxima acumulación de lactato en sangre como consecuencia de un ejercicio de alta intensidad decrece progresivamente. (Eduards, 1936; Cerretelli 1980; West, 1986). Este fenómeno también es conocido como la "paradoja del lactato" aún no tiene explicación.
En sujetos aclimatados a gran altitud (5000 metros.) biopsias del músculo vasto lateral tomadas inmediatamente después de un test progresivo de ciclismo mostraron que en el agotamiento, el sustrato de energía nucleótido de adenina fué menos deplectado, tenía menos lactato acumulado, menos glucógeno degradado mientras que el pH muscular era más elevado comparado con las mismas condiciones a nivel del mar (Green et al. 1989). Un alto pH muscular y bajo nivel de lactato también fue confirmado por otros autores (Bender, et. al.; Green et. al.; Young et al.).
Varias hipótesis han sido investigadas para explicar este fenómeno, como la disminución de la capacidad buffer, la capacidad de la exitabilidad de las motoneuronas alfa en el sistema nervioso central provocadas por la hipoxia hipobárica a partir de estudios realizados por B. Kayser, se realizaron determinaciones electromiográficas y metabolicas de los factores que limitan la performance y la influencia de la masa muscular en la fatiga, no encontraron signos de fatiga, electromiográficos ni metabólicos. Una conclusión de estos trabajos es que la fatiga en grandes altitudes, en hipóxia crónica y para esfuerzos de grandes grupos musculares, el sistema nervioso central (SNC), tiene un papel limitante en esfuerzos llevados hasta el agotamiento. A gran altura la contribución diafragmática a la ventilación durante el ejercicio decrece en el tiempo. Esta fatiga diafragmática puede contribuir, via inhibición refleja a una limitación de la activación motora en gran altitud. Sin embargo, queda abierta otra cuestión y otros posibles mecanismos, como la disminución de la disponibilidad de O2 en el SNC, esto también podría jugar un rol impotante.
Según Mishchenko y Monogarov al realizar trabajo pesado, sobre todo en altura, la disminución de la concentración de bicarbonato sería el responsable de la disminución de la aparición de lactato en sangre, provocando acidez intracelular y alcalosis extracelular, lo cual provoca fatiga muscular local como factor limitante en las cargas físicas efectuada en la altura.
a) Mediciones de pH muscular pos ejercicio mostraron valores significativamente más elevados que a nivel del mar. Podría postularse que existe un díficit en el transporte de protones H o de lactato pero se contradice con algunos hechos tales como la distribución en los compartimentos intra y extracelular de lactato es similar a la de normoxia
b)La cinética arterial de lactato durante la recuperación post esfuerzo supramáximo hasta el agotamiento es similar a la de normoxia
c)El pH muscular es más alcalino.
d)En el agotamiento el lactato arterial y muscular son más bajos que en normoxia. Según Davies una alcalosis respiratoria a nivel del mar provoca un incremento en los niveles de lactato o una mayor capacidad glucolítica. Por lo tanto el efecto de aumento de la ventilación luego de la exposición a la altitud podría actuar por este mecanismo mejorando el rendimiento en esfuerzos supramáximos.
Fuentes
- Kisner, Carolyn & Lynn Allen Colby. Therapeutic Exercise: Foundations and Techniques. Philadelphia: F.A. Davis Company, 1986. Págs. 591-592, 604-605.
- Nieman, David C. The Sports Medicine Fitness Course. Palo Alto, CA: Bull Publishing Co., 1986. Págs. 210-211.
- Smith, Michael L & Jere H. Mitchell. "Cardiorespiratory Adaptations to Training". En: Blair,
- Steven N., Patricia Painter, Russell R. Pate, L. Kent Smith & C. Barr Taylor (Editores), ACSM.
- Resource Manual for Guidelines for Exercise testing and Prescription. Philadelphia: Lea & Febiger, 1988. Págs. 62-65.