James Clerk Maxwell

(Redirigido desde «Maxwell»)
James Clerk Maxwell
Información sobre la plantilla
Imagen actualizada de James Clerk Maxwell.png
Fecha de nacimiento13 de junio de 1831
Lugar de nacimientoEdimburgo, Bandera del Reino Unido Reino Unido
Fecha de fallecimiento5 de noviembre de 1879
Lugar de fallecimientoCambridge, Bandera del Reino Unido Reino Unido
CampoFísica
Alma máterUniversidad de Cambridge
Conocido porCreación de la teoría electromagnética y la teoría cinética de gases.
Premios
destacados
Medalla Rumford (1860)
Firma
Firma de James Clerk Maxwell.png

James Clerk Maxwell. (Edimburgo, 1831-Glenlair, Reino Unido, 1879). Físico británico. Fue una de las mentes matemáticas más preclaras de su tiempo, y muchos físicos lo consideran el científico del siglo XIX que más influencia tuvo sobre la física del siglo XX habiendo hecho contribuciones fundamentales en la comprensión de la naturaleza. Muchos consideran que sus contribuciones a la ciencia son de la misma magnitud que las de Isaac Newton y Albert Einstein.

Síntesis biográfica

Nació en el seno de una familia escocesa de la clase media, hijo único de un abogado de Edimburgo.

Tras la temprana muerte de su madre a causa de un cáncer abdominal la misma dolencia que pondría fin a su vida, recibió la educación básica en la Edimburg Academy, bajo la tutela de su tía Jane Cay. Con tan solo dieciséis años ingresó en la universidad de Edimburgo, y en 1850 pasó a la Universidad de Cambridge, donde deslumbró a todos con su extraordinaria capacidad para resolver problemas relacionados con la física.

Cuatro años más tarde se graduó en esta universidad, pero el deterioro de la salud de su padre le obligó a regresar a Escocia y renunciar a una plaza en el prestigioso Trinity College de Cambridge.

Trayectoria científica

Inició sus estudios universitarios a la edad de 13 años, con 15 años redactó un importante trabajo de mecánica. A los 25 fue nombrado catedrático en Aberdeen, después en Londres y, en 1871, de un instituto especialmente construido para él en Cambridge. Además de su actividad profesional, Maxwell se dedicó a la realización de estudios de carácter privado en sus posesiones de Escocia. Es el creador de la electrodinámica moderna y el fundador de la teoría cinética de los gases. Descubrió las ecuaciones llamadas ´´ecuaciones de Maxwell´´, y que se definen como las relaciones fundamentales entre las perturbaciones eléctricas y magnéticas, que simultáneamente permiten describir la propagación de las ondas electromagnéticas que, de acuerdo con su teoría, tienen el mismo carácter que las ondas luminosas.

Más tarde Heinrich Rudolph Hertz lograría demostrar experimentalmente la veracidad de las tesis expuestas por Maxwell. Sus teorías constituyeron el primer intento de unificar dos campos de la física que, antes de sus trabajos, se consideraban completamente independientes: la Electricidad y el magnetismo (conocidos como electromagnetismo). En el año 1859 Maxwell formuló la expresión termodinámica que establece la relación entre la temperatura de un gas y la energía cinética de sus moléculas.

En 1871 fue nombrado director del Cavendish Laboratory. Publicó dos artículos, clásicos dentro del estudio del Electromagnetismo, y desarrolló una destacable labor tanto teórica como experimental en termodinámica; las relaciones de igualdad entre las distintas derivadas parciales de las funciones termodinámicas, denominadas relaciones de Maxwell, están presentes de ordinario en cualquier libro de texto de la especialidad. Sin embargo, son sus aportaciones al campo del elecromagnetismo las que lo sitúan entre los grandes científicos de la historia. En el prefacio de su obra Treatise on Electricity and Magnetism (1873) declaró que su principal tarea consistía en justificar matemáticamente conceptos físicos descritos hasta ese momento de forma únicamente cualitativa, como las leyes de la inducción electromagnética y de los campos de fuerza, enunciadas por Michael Faraday.

Con este objeto, Maxwell introdujo el concepto de onda electromagnética, que permite una descripción matemática adecuada de la interacción entre electricidad y magnetismo mediante sus célebres ecuaciones que describen y cuantifican los campos de fuerzas. Su teoría sugirió la posibilidad de generar ondas electromagnéticas en el laboratorio, hecho que corroboró Heinrich Hertz en 1887, ocho años después de la muerte de Maxwell, y que posteriormente supuso el inicio de la era de la comunicación rápida a distancia. Aplicó el análisis estadístico a la interpretación de la teoría cinética de los gases, con la denominada función de distribución de Maxwell-Boltzmann, que establece la probabilidad de hallar una partícula con una determinada velocidad en un gas ideal diluido y no sometido a campos de fuerza externos. Justificó las hipótesis de Avogadroy de Ampère.

Demostró la relación directa entre la viscosidad de un gas y su temperatura absoluta, y enunció la ley de equipartición de la energía. Descubrió la birrefringencia temporal de los cuerpos elásticos translúcidos sometidos a tensiones mecánicas y elaboró una teoría satisfactoria sobre la percepción cromática, desarrollando los fundamentos de la fotografía tricolor.

La influencia de las ideas de Maxwell va más allá, si cabe, de lo especificado, ya que en ellas se basan muchas de las argumentaciones tanto de la teoría de la relatividad einsteiniana como de la moderna mecánica cuántica del siglo XX.

Las ecuaciones de Maxwell

Las ecuaciones de Maxwell son un conjunto de cuatro ecuaciones (originalmente 20 ecuaciones) que describen por completo los fenómenos electromagnéticos. La gran contribución de James Clerk Maxwell fue reunir en estas ecuaciones largos años de resultados experimentales, debidos a Coulomb, Gauss, Ampere, Faraday y otros, introduciendo los conceptos de campo y corriente de desplazamiento, y unificando los campos eléctricos y magnéticos en un solo concepto: el campo electromagnético. Luego Heaviside y Hertz produjeron las fórmulas que actualmente maneja la ciencia. Aunque las fórmulas que lograron Heaviside y Hertz son un modelo de compacidad y síntesis, se considera que el tratamiento en cuaterniones es más intuitivo y permite deducir, "ver" y anticipar más que con las "menos digeribles" fórmulas diferenciales. Los cuaterniones se prestan muy bien para describir vectores que giran en el espacio.

Es probable que Nikola Tesla y Marconi conocieran y manejaran las expresiones originales de Maxwell. En el prefacio de su obra Treatise on Electricity and Magnetism (1873) declaró que su principal tarea consistía en justificar matemáticamente conceptos físicos descritos hasta ese momento de forma únicamente cualitativa, como las leyes de la inducción electromagnética y de los campos de fuerza, enunciadas por Michael Faraday. Con este objeto, Maxwell introdujo el concepto de onda electromagnética, que permite una descripción matemática adecuada de la interacción entre electricidad y magnetismo mediante sus célebres ecuaciones que describen y cuantifican los campos de fuerzas. Su teoría sugirió la posibilidad de generar ondas electromagnéticas en el laboratorio, hecho que corroboró Heinrich Hertz en1887, ocho años después de la muerte de Maxwell, y que posteriormente supuso el inicio de la era de la comunicación rápida a distancia.

Contribuciones científicas

Entre sus primeros trabajos científicos Maxwell trabajó en el desarrollo de una teoría del color y de la visión y estudió la naturaleza de los anillos de Saturno demostrando que estos no podían estar formados por un único cuerpo sino que debían estar formados por una miríada de cuerpos mucho más pequeños. También fue capaz de probar que la teoría nebular de la formación del Sistema Solar vigente en su época era errónea ganando por estos trabajos el Premio Adams de Cambridge en 1859. En 1860, Maxwell demostró que era posible realizar fotografías en color utilizando una combinación de filtros rojo, verde y azul obteniendo por este descubrimiento la Medalla Rumford ese mismo año.

Véase también

Fuente