Astrodinámica

Astrodinámica
Información sobre la plantilla
Ley-de-gravitación.jpg
Concepto:estudio de las órbitas, especialmente el de los satélites artificiales y sondas espaciales, basado en la mecánica celeste y en la balística

Astrodinámica. Ciencia que estudia el comportamiento de los objetos, naturales y artificiales, en el espacio.

Otras definiciones

Astrodinámica: Parte de la astronomía que estudia las leyes del movimiento de los astros.
La astrodinámica es el estudio de las órbitas, especialmente el de los satélites artificiales y sondas espaciales basándose en la mecánica celeste y en la balística.
La mecánica celeste se encarga del estudio del movimiento de los planetas y otros cuerpos naturales;. esta disciplina consiste en la aplicación de las leyes de Newton del movimiento y de la ley de la gravitación universal.

Leyes de astrodinámica

Leyes de Newton

Primera ley de Newton o ley de la inercia

Todo cuerpo continúa en su estado de reposo, o de movimiento uniforme en una línea recta, a menos que sea obligado a cambiar ese estado por fuerzas aplicadas sobre él. [1]

El movimiento es relativo, es decir, depende de cual sea el observador que describa el movimiento. Así, para un pasajero A sentado un tren, otro pasajero B también sentado esta en reposo, mientras que para alguien que ve pasar el tren desde el andén de una estación, tanto el pasajero A como el B se están moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el movimiento.

La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actúa ninguna fuerza neta se mueve con velocidad constante.

En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que se está estudiando se pueda tratar como si se estuviera en un sistema inercial. En muchos casos, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial.

Segunda ley de Newton o ley de fuerza

La fuerza define la dirección en que el cuerpo se pone en movimiento o cambia dicho movimiento. Ambas, fuerza y masa, determinan la rapidez con que el cuerpo cambia su reposo o movimiento: cuanto mayor sea la fuerza aplicada y menor la masa del cuerpo, mayor será dicha rapidez.[1]

Segunda Ley Newton.jpg

Esta ley se encarga de cuantificar el concepto de fuerza. En términos matemáticos se expresa mediante la relación:

F = m a

Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como:
→      →
F = m a

La unidad de fuerza en el Sistema Internacional es el Newton y se representa por N. Un Newton es la fuerza que hay que ejercer sobre un cuerpo de un kilogramo de masa para que adquiera una aceleración de 1 m/s2, o sea,

1 N = 1 Kg 1 m/s2

La expresión de la Segunda ley de Newton que hemos dado es válida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F = m • a.

Vamos a generalizar la Segunda ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa. Para ello primero vamos a definir una magnitud física nueva. Esta magnitud física es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad, es decir:

p = m v

La cantidad de movimiento también se conoce como momento lineal. Es una magnitud vectorial y, en el Sistema Internacional se mide en Kgm/s . En términos de esta nueva magnitud física, la Segunda ley de Newton se expresa de la siguiente manera:

La Fuerza que actúa sobre un cuerpo es igual a la variación temporal de la cantidad de movimiento de dicho cuerpo, es decir,

F = dp/dt

De esta forma incluimos también el caso de cuerpos cuya masa no sea constante

Tercera ley de Newton o ley de acción y reacción

Si un cuerpo A ejerce una fuerza sobre otro B, entonces, el cuerpo B ejercerá una fuerza sobre el A, de igual valor; pero en sentido contrario. [1]

Tercera Ley Newton.gif

Matemáticamente la tercera ley del movimiento de Newton suele expresarse como sigue:

F1 = F2'

donde F1 es la fuerza que actúa sobre el cuerpo 1 y F2' es la fuerza reactiva que actúa sobre el cuerpo 2

Ley de gravitación universal

La Ley de Gravitación Universal describe la interacción gravitatoria de los cuerpos.

La Ley de Gravitación Universal es una de las leyes físicas formuladas por Isaac Newton en su libro Philosophiae Naturalis Principia Mathematica de 1687. Describe la interacción gravitatoria entre cuerpos masivos, y establece una relación de proporcionalidad de la fuerza gravitatoria con la masa de los cuerpos.

Leyes de Kepler

El astrónomo alemán (1571-1630) formuló las tres famosas leyes que llevan su nombre después de analizar un gran número de observaciones realizadas por Tycho Brahe (1546-1601) de los movimientos de los planetas, sobre todo de Marte. Kepler, haciendo cálculos sumamente largos, encontró que había discrepancias entre la trayectoria calculada para Marte y las observaciones de Tycho, diferencias que alcanzaban en ocasiones los 8 minutos de arco (las observaciones de Tycho poseían una exactitud de alrededor de 2 minutos de arco) Estas diferencias lo llevaron a descubrir cual era la verdadera órbita de Marte y los demás planetas del Sistema Solar.

1ra. Orbitas elípticas

Un satélite en órbita alrededor de la Tierra tiene una velocidad tangencial y una aceleración hacia dentro

Las órbitas de los planetas son elipses que presentan una pequeña excentricidad y en donde el Sol se localiza en uno de sus focos. Una elipse es básicamente un círculo ligeramente aplastado. Técnicamente se denomina elipse a una curva plana y cerrada en donde la suma de la distancia a los focos (puntos fijos, F1 y F2) desde uno cualquiera de los puntos M que la forman es constante e igual a la longitud del eje mayor de la elipse (segmento AB). El eje menor de la elipse es el segmento CD, es perpendicular al segmento AB y corta a este por el medio. Primera ley.JPGLa excentricidad es el grado de aplastamiento de la elipse. Una excentricidad igual a cero representa un círculo perfecto. Cuanto más grande la excentricidad, mayor el aplastamiento de la elipse. Órbitas con excentricidades iguales a uno se denominan parabólicas, y mayores a uno hiperbólicas.La excentricidad de la elipse puede calcularse de la siguiente manera: e = F1F2 / AB Donde e es la excentricidad, F1F2 es a distancia entre los focos y AB es el eje mayor de la elipse. Si la distancia entre los focos F1F2 es cero, como en el caso del círculo, la excentricidad da como resultado cero. Las órbitas de los planetas son elípticas, presentando una pequeña excentricidad. En el caso de la Tierra el valor de la excentricidad es de 0.017, el planeta de mayor excentricidad es Plutón con 0.248, y le sigue de cerca Mercurio con 0.206.

2da. Ley de las órbitas

Las áreas barridas por el radio vector que une a los planetas al centro del Sol son iguales a tiempos iguales. La velocidad orbital de un planeta (velocidad a la que se desplaza por su órbita) es variable, de forma inversa a la distancia al Sol: a mayor distancia la velocidad orbital será menor, a distancias menores la velocidad orbital será mayor. La velocidad es máxima en el punto más cercano al Sol (perihelio) y mínima en su punto más lejano (afelio). El radio vector de un planeta es la línea que une los centros del planeta y el Sol en un instante dado. El área que describen en cierto intervalo de tiempo formado entre un primer radio vector y un segundo radio vector mientras el planeta se desplaza por su órbita es igual al área formada por otro par de radio vectores en igual intervalo de tiempo orbital. Segunda ley En el gráfico superior: el tiempo que le toma al planeta recorrer del punto A al punto B de su órbita es igual al tiempo que le toma para ir del punto C al D, por tanto, las áreas marcadas OAB y OCD son iguales. Para que esto suceda, el planeta debe desplazarse más rápidamente en las cercanías del Sol (en el foco de la elipse, punto O del gráfico)

3ra. Ley armónica

El 17 de octubre de 1604 observó una supernova en nuestra propia Galaxia, la Vía Láctea a la que más tarde se le llamaría la estrella de Kepler. La estrella había sido observada por otros astrónomos europeos el día 9 del mismo mes como Brunowski en Praga (quién escribió a Kepler), Altobelli en Verona, Clavius en Roma y Capra y Marius en Padua. Kepler inspirado por el trabajo de Tycho Brahe realizó un estudio detallado de su aparición. Su obra De Stella nova in pede Serpentarii ('La nueva estrella en el pie de Ophiuchus') proporcionaba evidencias de que el Universo no era estático y sí sometido a importantes cambios. La estrella pudo ser observada a simple vista durante 18 meses después de su aparición. La supernova se encuentra a tan solo 13000 años luz de nosotros. Ninguna supernova posterior ha sido observada en tiempos históricos dentro de nuestra propia galaxia. Dada la evolución del brillo de la estrella hoy en día se sospecha que se trata de una supernova de tipo I.

Referencias

  1. 1,0 1,1 1,2 Dr. Pablo Valdés, Castro. Física Octavo Grado. Editorial Pueblo y Educación,La Habana 2009 isbn:978-959-13-0996-9

Fuentes