Servomotor

Servomotor
Información sobre la plantilla
Servo motor.jpg
Servomotor

Servomotor (también llamado Servo) es un dispositivo similar a un motor de corriente continua, que tiene la capacidad de ubicarse en cualquier posición dentro de su rango de operación, y mantenerse estable en dicha posición. Está conformado por un motor, una caja reductora y un circuito de control. Los servos se utilizan frecuentemente en sistemas de radio control y en robótica, pero su uso no está limitado a estos. Es posible modificar un servomotor para obtener un motor de corriente continua que, si bien ya no tiene la capacidad de control del servo, conserva la fuerza, velocidad y baja inercia que caracteriza a estos dispositivos. Un servo normal o Standard tiene 3kg por cm. de torque que es bastante fuerte para su tamaño. También potencia proporcional para cargas mecánicas. Un servo, por consiguiente, no consume mucha energía. La corriente que requiere depende del tamaño del servo. Normalmente el fabricante indica cual es la corriente que consume. Eso no significa mucho si todos los servos van a estar moviéndose todo el tiempo. La corriente depende principalmente del par, y puede exceder un amperio si el servo está enclavado.

Tipos de servomotores

Hay tres tipos de servomotores:

  • Servomotores de CC
  • Servomotores de AC
  • Servomotores de imanes permanentes o Brushless.

Partes de un servomotor

Estructura típica
  • Motor de corriente continua

Es el elemento que le brinda movilidad al servo. Cuando se aplica un potencial a sus dos terminales, este motor gira en un sentido a su velocidad máxima. Si el voltaje aplicado sus dos terminales es inverso, el sentido de giro también se invierte.

  • Engranajes reductores

Se encargan de convertir gran parte de la velocidad de giro del motor de corriente continua en torque.

  • Circuito de control

Este circuito es el encargado del control de la posición del motor. Recibe los pulsos de entrada y ubica al motor en su nueva posición dependiendo de los pulsos recibidos.

Circuito de control

Tiene además de los circuitos de control un potenciómetro conectado al eje central del motor. Este potenciómetro permite a la circuitería de control, supervisar el ángulo actual del servo motor. Si el eje está en el ángulo correcto, entonces el motor está apagado. Si el circuito chequea que el ángulo no es correcto, el motor volverá a la dirección correcta, hasta llegar al ángulo que es correcto. El eje del servo es capaz de llegar alrededor de los 180 grados. Normalmente, en algunos llega a los 210 grados, pero varía según el fabricante. Un servo normal se usa para controlar un movimiento angular de entre 0 y 180 grados. Un servo normal no es mecánicamente capaz de retornar a su lugar, si hay un mayor peso que el sugerido por las especificaciones del fabricante. Los servomotores tienen 3 terminales:

  • Terminal positivo: Recibe la alimentación del motor (4 a 8 voltios)
  • Terminal negativo: Referencia tierra del motor (0 voltios)
  • Entrada de señal: Recibe la señal de control del motor

Los colores del cable de cada terminal varían con cada fabricante: el cable del terminal positivo siempre es rojo; el del terminal negativo puede ser marrón o negro; y el del terminal de entrada de señal suele ser de color blanco, naranja o amarillo.

Conexión externa del servo

Cálculos

Dependiendo del modelo del servo, la tensión de alimentación puede estar comprendida entre los 4 y 8 voltios. El control de un servo se reduce a indicar su posición mediante una señal cuadrada de voltaje. El ángulo de ubicación del motor depende de la duración del nivel alto de la señal. Cada servo motor, dependiendo de la marca y modelo utilizado, tiene sus propios márgenes de operación. Para el servomotor Futaba S3003, los valores posibles de la señal en alto están entre 0,3 y 2,1 ms, que posicionan al motor en ambos extremos de giro (0° y 180°, respectivamente). El valor 1,2 ms indica la posición central, y otros valores de duración del pulso dejarían al motor en la posición proporcional a dicha duración. Es sencillo notar que, para el caso del motor anteriormente mencionado, la duración del pulso alto para conseguir un ángulo de posición θ estará dada por la fórmula t = 0,3 + θ/100 Donde t está dado en milisegundos y θ en grados.

Duración del nivel alto [ms] Ángulo [grados]
0,3 0
1,2 90
2,1 180
0,75 45

Para bloquear el servomotor en una posición, es necesario enviarle continuamente una señal con la posición deseada. De esta forma el servo conservará su posición y se resistirá a fuerzas externas que intenten cambiarlo de posición. Si los pulsos no se envían, el servomotor queda liberado, y cualquier fuerza externa puede cambiarlo de posición fácilmente.

Características técnicas de algunas marcas de servo

Funcionamiento del servo

La modulación por anchura de pulso, PWM (Pulse Width Modulation), es una de los sistemas más empleados para el control de servos. Este sistema consiste en generar una onda cuadrada en la que se varía el tiempo que el pulso está a nivel alto, manteniendo el mismo período (normalmente), con el objetivo de modificar la posición del servo según se desee.

PWM para recorrer todo el rango de operación del servo

El sistema de control de un servo se limita a indicar en que posición se debe situar. Esto se lleva a cabo mediante una serie de pulsos tal que la duración del pulso indica el ángulo de giro del motor. Cada servo tiene sus márgenes de operación, que se corresponden con el ancho del pulso máximo y mínimo que el servo entiende. Los valores más generales se corresponden con pulsos de entre 1 ms y 2 ms de anchura, que dejarían al motor en ambos extremos (0º y 180º). El valor 1.5 ms indicaría la posición central o neutra (90º), mientras que otros valores del pulso lo dejan en posiciones intermedias. Estos valores suelen ser los recomendados, sin embargo, es posible emplear pulsos menores de 1 ms o mayores de 2 ms, pudiéndose conseguir ángulos mayores de 180°. Si se sobrepasan los límites de movimiento del servo, éste comenzará a emitir un zumbido, indicando que se debe cambiar la longitud del pulso. El factor limitante es el tope del potenciómetro y los límites mecánicos constructivos.

Ejemplos de posicionamiento de un servo

El período entre pulso y pulso (tiempo de OFF) no es crítico, e incluso puede ser distinto entre uno y otro pulso. Se suelen emplear valores ~ 20 ms (entre 10 ms y 30 ms). Si el intervalo entre pulso y pulso es inferior al mínimo, puede interferir con la temporización interna del servo, causando un zumbido, y la vibración del eje de salida. Si es mayor que el máximo, entonces el servo pasará a estado dormido entre pulsos. Esto provoca que se mueva con intervalos pequeños.

Periodos entre pulsos

A continuación se puede observar la posición del eje de un servomotor según la anchura del pulso aplicada:

Otra posibilidad de pulsos de control

Prueba del servomotor

Para comprobar el funcionamiento de un servomotor se lo puede hacer mediante un circuito oscilador en este caso un 555, logrando así determinar los tiempos necesarios para el funcionamiento de este para que luego puede ser programado en un microcontrolador.

Circuito de prueba del servo

Modificación de los servos

Es posible modificar un servo motor para eliminar su restricción de giro y permitirle dar giros completos. Esto, sin embargo, convierte al servo motor en un motor de corriente continua normal, pues es necesario eliminar el circuito de control. Debido que los engranajes reductores se conservan luego de la modificación, el motor obtenido mantiene la fuerza y velocidad que tenían servo inicial. Además, poseen la ventaja de que tienen menos inercia que los motores de corriente continua comerciales, lo que los hace útiles para ciertas aplicaciones.

Aplicaciones

En la práctica, se usan servos para posicionar superficies de control como el movimiento de palancas, pequeños ascensores y timones. Ellos también se usan en radio control, títeres, y por supuesto, en robots.

Conclusiones y Recomendaciones

  • Mucha atención en las tierras. La tierra del servo debe concordar con la tierra de la fuetes y del sistema que envía las ordenes al servo
  • Si usas cables demasiado largos para controlar tus servos, es probable que tengas ruido en los servos, esto ocurre porque mientras más largo es el cable resulta más vulnerable a ruido electromagnético e incluso es perturbado por señales de otros servos. Esto se soluciona utilizando cable blindado, solo recuerda aterrizar el blindaje.
  • Un servo en operación normal no se debe de calentar.

Siempre que sea posible utiliza fuentes de voltaje separadas para tus servomotores y para tu electrónica digital. los servomotores generan bastante ruido hacia su línea de alimentación. Los servos también envejecen con el uso.

Fuente