Tiristor controlado por MOS

Tiristor controlado por MOS(MCT)
Información sobre la plantilla
Ext2.jpg
Tiristor de última generación.

Tiristor controlado por MOS (MCT). El MCT es otro dispositivo semiconductor de potencia híbrido que combina los atributos del MOSFET y el tiristor. Recientemente se puso en disponibilidad en el mercado y su aplicación fundamental es en la electrónica de potencia.

Extructura

Figura I.

Está integrado por 2 MOSFET, uno de ellos enciende al tiristor y el otro lo apaga. Existen diversos tipos de estructuras, pero todas ellas coinciden existe un tiristor pnpn que determina las propiedades de conducción (y de bloqueo).

Entre el ánodo A y el cátodo K existe una estructura pnpn que como ya se mencionó forma la estructura del tiristor del MCT. La región gate - ánodo está formada por más de 105 celdas. Este largo número de celdas provee superficies cortas de largas secciones transversales para una rápida y uniforme conmutación de corriente. Dentro de la región ánodo - gate existen dos MOSFET's. Uno de ellos es un canal p, tipo pnp que es usado para el encendido y el otro es un canal n, de tipo npn que es usado para el apagado.

Figura II.

El circuito equivalente se muestra en la figura I y el símbolo correspondiente en la II. La estructura NPNP se puede representar por un transistor NPN Q1 y con un transistor Q2. La estructura de compuerta MOS se puede representar por un MOSFET de canal p M1 y un MOSFET de canal n M2.



Principio de funcionamiento

Como se trata de una estructura NPNP, en vez de la estructura PNPN de un SCR normal, el ánodo sirve como la terminal de referencia con respecto a la cual se aplican todas las señales de compuerta. Supongamos que el MCT está en estado de bloqueo directo y se aplica un voltaje negativo VGA. Un canal, p (o una capa de inversión) se forma en el material dopado n, haciendo que los huecos fluyan lateralmente del emisor p E2 de Q2 (fuente S1 del MOSFET M1 del canal p) a través del canal p hacia la base p B1 de Ql (que es drenaje D1 del MOSFET M1, del canal p). Este flujo de huecos forma la corriente de base correspondiente al transistor npn Q1. A continuación e1 emisor n+ E1 de Q1, inyecta electrones, que son recogidos en la base n B2 (y en el colector n C1) que hace que el emisor p E2 inyecte huecos en la base n B2, de tal forma que se active el transistor PNP Q2 y engancha al MCT. En breve, un VGA de compuerta negativa activa al MOSFET M1 canal p, proporcionando así la corriente de base del transistor Q2.

Supongamos que el MCT está en estado de conducción, y se aplica un voltaje positivo VGA. Se forma entonces un canal n en el material contaminado p, haciendo que fluyan lateralmente electrones de la base n B2 de Q2 (fuente S2 del MOSFET M2 del canal n) a través del canal n del emisor n+ fuertemente contaminado de Ql (drenaje D2 del MOSFET M2 del canal n+). Este flujo de electrones desvía la corriente de base del transistor PNP Q2 de tal forma que su unión base-emisor se desactiva, y ya no habrá huecos disponibles para recolección por la base p B1 de Q1 (y el colector p C2 de Q2). La eliminación de esta corriente de huecos en la base p B1, hace que se desactive el transistor NPN Q1, y el MCT regresa a su estado de bloqueo. En breve, un pulso positivo de compuerta VGA, desvía la corriente que excita la base de Ql, desactivando por lo tanto el MCT.

El MCT se puede operar como dispositivo controlado por compuerta, si su corriente es menor que la corriente controlable pico. Intentar desactivar el MCT a corrientes mayores que su corriente controlable pico de especificación, puede provocar la destrucción del dispositivo. Para valores más altos de corriente, el MCT debe ser conmutado como un SCR estándar. Los anchos de pulso de la compuerta no son críticos para dispositivos de corrientes pequeñas. Para corrientes mayores, el ancho del pulso de desactivación debe ser mayor. Además, durante la desactivación, la compuerta utiliza una corriente pico. En muchas aplicaciones, incluyendo inversores y pulsadores, se requiere, de un pulso continuo de compuerta sobre la totalidad del período de encendido/apagado a fin de evitar ambigüedad en el estado.

Características

  • Una baja caída de voltaje directo durante la conducción.
  • Un tiempo de activado rápido, típicamente 0.4m s, y un tiempo de desactivado rápido, típicamente 1.25m s, para un MCT de 300A, 500V.
  • Bajas perdidas de conmutación.
  • Una baja capacidad de bloqueo voltaje inverso.
  • Una alta impedancia de entrada de compuerta, lo que simplifica mucho los circuitos de excitación. Es posible ponerlo efectivamente en paralelo, para interrumpir corrientes altas, con sólo modestas reducciones en la especificación de corriente del dispositivo. No se puede excitar fácilmente a partir de un transformador de pulso, si se requiere de una polarización continua a fin de evitar ambigüedad de estado.


Debido a que el tiempo de apagado del MCT es muy bajo (cerca de 1.5 ms) y que posee un elevado di/dt (1000 A/ms) y dv/dt ( 5000 V/ms), éstas características superiores lo convierten en un dispositivo de conmutación ideal y posee un tremendo potencial para aplicaciones en motores de media y alta potencia, así como en distintas aplicaciones en la electrónica de potencia.

Enlace externo

Fuentes

  • MUHAMMAD H. RASHID, Electrónica de potencia, Ph.D.,Fellow IEE
  • tiristor