Diferencia entre revisiones de «Ley de las tangentes»
m |
|||
| Línea 1: | Línea 1: | ||
| − | '''Ley de las tangentes'''. Además de las leyes de los senos y de los cosenos, también hay una ley de las tangentes, la cual fue formulada por Francisco Viete (1540-1603) <ref>Larson: ''Trigonometría'', Cengage Learning, Ciudad de México 2011</ref>. Resulta de la comparación de la suma y diferencia de dos lados de un triángulo escaleno <ref> Observación del editor, para evitar diferencia = 0 </ref> con las tangentes de la semisuma y semidiferencia de los respectivos ángulos opuestos a los aludidos lados. Relación que se expresa mediante una proporción. Para su demostración se puede usar la ley de los cosenos y las fórmulas de cambio de suma a productos de razones trigonométricas. | + | {{Normalizar|motivo=Colocar plantilla correspondiente al tema}} |
| + | '''Ley de las tangentes'''. Además de las [[Ley de los senos|leyes de los senos]] y de los [[Ley de los cosenos|cosenos]], también hay una ley de las tangentes, la cual fue formulada por [[Francisco Viete]] (1540-1603) <ref>Larson: ''Trigonometría'', Cengage Learning, Ciudad de México 2011</ref>. Resulta de la comparación de la suma y diferencia de dos lados de un triángulo escaleno <ref> Observación del editor, para evitar diferencia = 0 </ref> con las tangentes de la semisuma y semidiferencia de los respectivos ángulos opuestos a los aludidos lados. Relación que se expresa mediante una proporción. Para su demostración se puede usar la ley de los cosenos y las fórmulas de cambio de suma a productos de razones trigonométricas. | ||
==Teorema== | ==Teorema== | ||
| Línea 50: | Línea 51: | ||
* I. Bronshtein y otro: Manual de matemáticas para ingenieros y estudiantes. | * I. Bronshtein y otro: Manual de matemáticas para ingenieros y estudiantes. | ||
| − | [[Categoría: Matemáticas]][[Categoría: | + | [[Categoría:Matemáticas]][[Categoría:Trigonometría]] |
última versión al 15:36 29 ago 2024
Ley de las tangentes. Además de las leyes de los senos y de los cosenos, también hay una ley de las tangentes, la cual fue formulada por Francisco Viete (1540-1603) [1]. Resulta de la comparación de la suma y diferencia de dos lados de un triángulo escaleno [2] con las tangentes de la semisuma y semidiferencia de los respectivos ángulos opuestos a los aludidos lados. Relación que se expresa mediante una proporción. Para su demostración se puede usar la ley de los cosenos y las fórmulas de cambio de suma a productos de razones trigonométricas.
Teorema
La de dos lados cualesquiera de un triángulo es a su diferencia como la tangente de la mitad de la suma de los ángulos opuestos a estos lados es a la tangente de la mitad de la diferencia de estos ángulos [3].
- Proporción
Tomando los lados b y c del triángulo ABC con b ≠ c, mejor con b > c:
- ..(b+c):(b-c)::(B+C)/2:(B-C)/2
- Demostración
De la ley de los senos:
- b/sen b = c/sen C
- b+c/ b-c = senB + sen C / senB - senC
- b+c/ b-c = 2sen(B+C/2)cos (B-C/2) ÷2cos(B+C/2)cos (B-C/2
- :b+c/ b-c = tan(B+C/2)cot (B-C/2)
- b+c/ b-c = tan(B+C/2)/ tan (B-C/2) l.q.q.d.
- Generalización
- a+c/ a-c = tan(A+C/2)/ tan (A-C/2)
- a+b/ a-b = tan(A+B/2)/ tan (A-B/2) (III)
Ejemplos de aplicación
- Caso uno
Dato forma LAL
- a =872.5, b=632.7 C= 80º
- vamos a usar la suma de los lados, la semidiferencia de los mismos, la semisuma de los ángulos A y B, como la mitad de 180º-C.
- De la fórmula (III) despejamos tangente de la semidiferencia de A y B
- por arco tangente el valor de la semidiferencia de A y B
- teniendo la suma y la semidiferencia, hallamos A y B.
- para obtener el lado c empleamos la ley de los senos
- a =872.5, b=632.7 C= 80º
- c = b×senC/sen B [4]
- Caso dos
Mecánica- estática
- Dos fuerzas de intensidad 180 kg y 320 kg, respectivamente , actúan sobre un cuerpo haciendo entre ellas un ángulo de 72º. Obtener la intensidad y la dirección de la fuerza resultante. [5]
Referencias
Fuentes
- Granville y otros: Trigonometría plana y esférica
- Lumbreras Editores: Trigonometría plana y esférica con introducción al cálculo
- I. Bronshtein y otro: Manual de matemáticas para ingenieros y estudiantes.