Diferencia entre revisiones de «Geometría fractal»

m (Texto reemplazado: «<div align="justify">» por «»)
(Etiqueta: nuestro-nuestra)
Línea 2: Línea 2:
 
|nombre= Geometría Fractal
 
|nombre= Geometría Fractal
 
|imagen= Fractal.gif
 
|imagen= Fractal.gif
}}'''Geometría Fractal.''' Geometría Fractal es [[geometría]] que no distingue entre conjunto  matemático   y objeto natural. Este nuevo paradigma engulle  paradigmas anteriores proyectando un modelo que inagura  una nueva zona o región de lo real.
+
}}
 +
'''Geometría Fractal''' es una rama de la geometría que estudia estructuras matemáticas que se asemejan a patrones naturales, integrando lo matemático y lo visual en un paradigma que redefine nuestra percepción de lo real. Este enfoque combina objetos matemáticos con estructuras naturales, ofreciendo un modelo que inaugura una nueva visión de lo existente.
  
Los fractales son, objetos semi geométricos (por su irregularidad no pertenecen a la geometría tradicional) cuya estructura básica se repite a diferentes escalas. El fractal puede ser creado por el hombre, incluso con intenciones artísticas, aunque también existen estructuras naturales que son fractales (como los copos de nieve).
+
Los fractales son objetos semi-geométricos (por su irregularidad no pertenecen a la geometría tradicional) cuya estructura básica se repite a diferentes escalas. Los fractales pueden ser creados por el hombre con intenciones artísticas o encontrarse naturalmente en estructuras como copos de nieve.
  
==Historia==
+
==Origen e Historia==
 
[[Archivo:benoit-mandelbrot_fractals.jpg|thumb|right|100px|Benoît Mandelbrot, matemático francés]]
 
[[Archivo:benoit-mandelbrot_fractals.jpg|thumb|right|100px|Benoît Mandelbrot, matemático francés]]
El matemático francés [[Benoit Mandelbrot|Benoît Mandelbrot]] quien desarrolló, en [[1975]], el concepto de fractal, que proviene del vocablo latino fractus (“quebrado”). El término pronto fue aceptado por la comunidad científica e incluso ya forma parte del diccionario de la [[Real Academia Española (RAE).  
+
El matemático francés [[Benoit Mandelbrot|Benoît Mandelbrot]] desarrolló en [[1975]] el concepto de fractal, término derivado del latín ''fractus'' (“quebrado”). Desde entonces, los fractales han sido aceptados por la comunidad científica e incluso forman parte del diccionario de la [[Real Academia Española]].
  
La matemática fractal había sido, hasta los años 70, relegada a los pies de página o a los márgenes. Cuando algún matemático se encontraba con un monstruo lo consideraba una mera anécdota. En [[1919]], [[Felix Hausdorff|Hausdorff]] ideó un método para medir las dimensiones y medidas de los fractales, el llamado medida y dimensión Hausdorff. Al año siguiente Besicovitch, interesado por el trabajo de Hausdorff, en particular por la dimensión Hausdorff 1 creó la teoría geométrica de la medida.
+
Antes de los años 70, la matemática fractal se consideraba una curiosidad y permanecía relegada a los márgenes. En [[1919]], [[Felix Hausdorff|Hausdorff]] ideó un método para medir dimensiones y medidas de fractales, denominado ''medida y dimensión Hausdorff''. Un año después, Besicovitch expandió este trabajo creando la teoría geométrica de la medida.
En [[1963]] Edward Lorenz, meteorólogo, intuía el efecto mariposa  al redondear unos decimales en su programa de ordenador que  simulaba situaciones  meteorológicas. Al variar ligeramente el número de decimales después de la coma e introducir los resultados en su ordenador el      programa devolvió unos resultados sorprendentemente diferentes a los anteriores. El caos matemático había nacido.
 
   
 
Efecto mariposa: Esta expresión proviene del  hecho que el aleteo      de una mariposa en un remoto lugar de la Tierra puede originar un  tornado      en otro lugar. Exageraciones a parte, el caos demuestra que unas  ligeras    variaciones en las condiciones iniciales pueden originar resultados  impredecibles.
 
   
 
[[Gaston Maurice Julia|Gastón Julia]] ([[1893]]-[[1978]]) fue uno de los grandes precursores de la      matemática fractal. Nacido en 1893 fue herido en la cara durante      la [[Primera Guerra Mundial]]. Durante su estancia en el hospital se  interesó por      las iteraciones de funciones complejas y finalmente publicó el  artículo “informe      sobre la iteración de las funciones racionales” de 199 páginas      en la revista francesa Journal de Mathématiques Pures et Apliques.      Ello le mereció un galardón por parte de la Academia de ciencias      de Francia. En este artículo se mostraba lo que más tarde    se tratará en este trabajo, el conjunto de Julia.
 
  
[[Benoit Mandelbrot|Benoît Mandelbrot]] ([[1924]]), en los años 70 y posteriores, se      interesó mucho por la posibilidad de que una regla o cierto tipo      de orden determinaran el ruido que se proyectaba en las  comunicaciones      entre ordenadores. Este ingeniero de l’Ecole Politecnique de París      y actualmente IBM Fellow en el J.J. Watson Research Center y  profesor de      matemáticas en la universidad de Harvard había dado el primer      gran paso al publicar el libro sobre el cual reposan los  fundamentos de      la matemática fractal: The Fractal Geometry      of Nature (La geometría    fractal de la naturaleza [[1977]], [[1982]], [[1983]]).
+
En [[1963]], Edward Lorenz, meteorólogo, descubrió el efecto mariposa al redondear decimales en un programa de simulación meteorológica. Variaciones mínimas en las condiciones iniciales resultaron en resultados impredecibles, marcando el nacimiento del caos matemático.
  
En [[1987]], el matemático inglés Michael F. Barnsley descubrió la      transformación fractal, capaz de detectar fractales en fotografías      digitalizadas. Ello permitió crear la compresión fractal      para imágenes que obtiene resultados aceptables pero muy  inferiores      a la compresión JPEG o JPEG2000. Pero quizá el verdadero      protagonista de la historia fractal haya sido el ordenador. Ese  gran invento      que revolucionó el mundo permitió dar pasos agigantados en       numerosas ciencias, entre ellas la matemática. Los fractales quizá  no      hubieran sido objeto de estudio si no hubieran existido  ordenadores o hubieran      seguido siendo monstruos destinados a los pies de página o  márgenes.
+
'''Efecto mariposa:''' El aleteo de una mariposa en un lugar remoto puede desencadenar un tornado en otro. Esto muestra cómo pequeñas variaciones iniciales producen cambios impredecibles en sistemas dinámicos.
[[Archivo:mandelbrot.png|right|100px]]
 
  
De acuerdo a Mandelbrot, los fractales pueden presentar tres tipos diferentes de autosimilitud (las partes tienen la misma estructura que el todo):
+
[[Gaston Maurice Julia|Gastón Julia]] ([[1893]]–[[1978]]) exploró las iteraciones de funciones complejas y publicó el artículo “Informe sobre la iteración de las funciones racionales” en la revista francesa ''Journal de Mathématiques Pures et Appliquées''. Allí introdujo el conjunto de Julia.
  
* '''Autosimilitud exacta:''' El fractal resulta idéntico a cualquier escala
+
[[Benoit Mandelbrot|Mandelbrot]] publicó ''The Fractal Geometry of Nature'' ([[1977]], [[1982]], [[1983]]), estableciendo las bases de la geometría fractal. En [[1987]], Michael F. Barnsley introdujo la transformación fractal, permitiendo la compresión de imágenes digitales.
  
* '''Cuasiautosimilitud:''' Con el cambio de escala, las copias del conjunto son muy semejantes, pero no idénticas.
+
==Autosimilitud de los fractales==
 
+
Según Mandelbrot, los fractales pueden presentar tres tipos de autosimilitud:
* '''Autosimilitud estadística:''' El fractal debe tener medidas numéricas o estadísticas que se conserven con el cambio de escala.
+
* '''Autosimilitud exacta:''' El fractal resulta idéntico en cualquier escala.
 +
* '''Cuasiautosimilitud:''' Con el cambio de escala, las copias del conjunto son semejantes, pero no idénticas.
 +
* '''Autosimilitud estadística:''' El fractal conserva medidas numéricas o estadísticas con el cambio de escala.
  
 
==Uso de los fractales==
 
==Uso de los fractales==
 
====Compresión de imágenes====
 
====Compresión de imágenes====
Las técnicas fractales se utilizan, por ejemplo, para la comprensión de datos. A través del [[teorema del collage]], es posible encontrar un IFS (sistema de funciones iteradas), que incluye las transformaciones que lleva una figura completa en cada una de sus partes autosemejantes. Al quedar la información codificada en el IFS, es posible procesar la imagen.
+
Las técnicas fractales se utilizan para la compresión de datos. Gracias al [[teorema del collage]], es posible encontrar un IFS (sistema de funciones iteradas) que codifique la información de una figura completa en cada una de sus partes autosemejantes.
  
 
====Efectos visuales====
 
====Efectos visuales====
Una de las más triviales aplicaciones de los fractales son sus efectos visuales. No solamente engañan la vista, sino que también de algún modo confunden a la mente. Los fractales han estado siendo usados comercialmente en la industria cinematográfica, en películas como [[Star Wars]] y [[Star Trek]]. Las imágenes fractales son usadas como una alternativa ante costosos sets elaborados para producir paisajes fabulosos.
+
Los fractales son usados comercialmente en la industria cinematográfica, como en películas como [[Star Wars]] y [[Star Trek]], para generar paisajes fabulosos sin necesidad de sets costosos.
  
 
====Música fractal====
 
====Música fractal====
Otra aplicación de los fractales aparentemente irrelevante es la música fractal. Ciertas músicas, incluyendo las de [[Johann Sebastian Bach|Bach]] y las de [[Mozart]], pueden ser reducidas y todavía retener la esencia del compositor. Están siendo desarrolladas muchas nuevas aplicaciones software para el desarrollo de música fractal.
+
Ciertas músicas, como las de [[Johann Sebastian Bach|Bach]] y [[Mozart]], retienen su esencia incluso al ser reducidas. Se han desarrollado softwares para crear música fractal.
  
 
====Modelado de formas naturales====
 
====Modelado de formas naturales====
Las formas fractales, las formas en la que las partes se asemejan al todo, están presentes en la materia biológica, junto con las simetrías (las formas básicas que solo necesitan la mitad de información genética) y las espirales (Las formas de crecimiento y desarrollo de la forma básica hacia la ocupación de un mayor espacio), como las formas más sofisticadas en el desarrollo evolutivo de la materia biológica en cuanto que se presentan en procesos en los que se producen saltos cualitativos en las formas biológicas, es decir posibilitan catástrofes (hechos extraordinarios) que dan lugar a nuevas realidades más complejas, como las hojas que presentan una morfología similar a la pequeña rama de la que forman parte que, a su vez, presentan una forma similar a la rama, que a su vez es similar a la forma del árbol, y sin embargo cualitativamente no es lo mismo una hoja (forma biológica simple), que una rama o un árbol (forma biológica compleja).
+
Las formas fractales son comunes en la biología y permiten el desarrollo de estructuras complejas, como hojas, ramas y árboles, que muestran similitudes entre sus partes y el todo.
  
 
====Sistemas dinámicos====
 
====Sistemas dinámicos====
Las formas fractales no sólo se presentan en las formas espaciales de los objetos sino que se observan en la propia dinámica evolutiva de los sistemas complejos, dinámica que consta de ciclos (en los que partiendo de una realidad establecida simple acaban en la creación de una nueva realidad más compleja) que a su vez forman parte de ciclos más complejos los cuales forman parte del desarrollo de la dinámica de otro gran ciclo. Las evoluciones dinámicas de todos estos ciclos presentan las similitudes propias de los sistemas caóticos.
+
Los fractales también aparecen en la dinámica evolutiva de sistemas complejos, reflejando ciclos de desarrollo que producen nuevas realidades más sofisticadas.
 +
 
 
==Fractal autosemejante==
 
==Fractal autosemejante==
Son los atractores de un sistema de funciones iteradas contractivo.  
+
Son los atractores de un sistema de funciones iteradas contractivo.
===Ejemplos:===
 
Pentágono de Sierpinski:
 
 
 
[[Image:Penta.png]]
 
  
Alfombra de Sierpinski:  
+
===Ejemplos===
 +
Pentágono de Sierpinski: [[Image:Penta.png]]
  
[[Image:SierpinskiA.png]]
+
Alfombra de Sierpinski: [[Image:SierpinskiA.png]]
  
 
==Conjunto de Mandelbrot==
 
==Conjunto de Mandelbrot==
 +
El conjunto de Mandelbrot incluye los puntos del plano complejo para los cuales la "sucesión de Mandelbrot" está acotada en módulo.
  
El conjunto de Mandelbrot es el conjunto de puntos del plano complejo para los cuales la "sucesión de Mandelbrot" está acotada en módulo.
+
===Ejemplos===
 
+
Sucesión z<sub>n+1</sub> = z<sub>n</sub><sup>4</sup>+c: [[Image:Mandel1.png]]
=== Ejemplos ===
 
Sucesión z<sub>n+1</sub> = z<sub>n</sub><sup>4</sup>+c
 
 
 
[[Image:Mandel1.png]]
 
 
 
Sucesión z<sub>n+1</sub> = z<sub>n</sub><sup>-3</sup>+c
 
  
[[Image:Mandel2.png]]
+
Sucesión z<sub>n+1</sub> = z<sub>n</sub><sup>-3</sup>+c: [[Image:Mandel2.png]]
  
 
==Conjunto de Julia lleno==
 
==Conjunto de Julia lleno==
El Conjunto de Julia Lleno de la función '''f''' está formado por los puntos del plano complejo para los cuales las iteradas de la función en dichos puntos constituyen una sucesión no divergente.
+
El conjunto de Julia lleno de la función '''f''' contiene los puntos del plano complejo cuyas iteraciones no divergen.
=== Ejemplos ===
 
Función ''f(z) = z<sup>2</sup> + c'', siendo ''c= −0.8 + 0.156·i''
 
 
 
[[Image:Julia1.png]]
 
  
Función ''f(z) = z<sup>2</sup> + c'', siendo ''c= −0.4 + 0.6·i''
+
===Ejemplos===
 +
Función ''f(z) = z<sup>2</sup> + c'', con ''c= −0.8 + 0.156·i'': [[Image:Julia1.png]]
  
[[Image:Julia2.png]]
+
Función ''f(z) = z<sup>2</sup> + c'', con ''c= −0.4 + 0.6·i'': [[Image:Julia2.png]]
  
 
==Fuente==
 
==Fuente==
 
+
*[http://eprints.uanl.mx/10039/1/10_Virgilio_Gonzalez_Fundamentos_y.pdf Fractales: fundamentos y aplicaciones Parte I]
 +
*[http://repobib.ubiobio.cl/jspui/bitstream/123456789/1998/3/Valdes_Vasquez_Patricio.pdf Introducción a la geometría fractal]
 +
*[https://www.divulgamat.net/divulgamat15/index.php?view=article&catid=53:libros-de-divulgaciatemca&id=11270:una-nueva-manera-de-ver-el-mundo-la-geometria-fractal&format=pdf&option=com_content Una nueva manera de ver el mundo: La geometría fractal]
 
*[http://www.matesfacil.com/fractales/Mandelbrot/conjunto-Mandelbrot-definiciones-teorema-ejemplos-imagenes-funcion-sucesion-divergencia-multibrot-galeria.html Conjunto de Mandelbrot]
 
*[http://www.matesfacil.com/fractales/Mandelbrot/conjunto-Mandelbrot-definiciones-teorema-ejemplos-imagenes-funcion-sucesion-divergencia-multibrot-galeria.html Conjunto de Mandelbrot]
*[http://www.matesfacil.com/fractales/autosemejantes/fractal-autosemejante-definicion-ejemplos-funcion-propiedades-teorema-punto-fijo-compacto-iteraciones-sistema-contractivas-iteradas-galeria.html Fractales auto-semejantes]
+
*[http://definicion.de/fractal Definición de fractal]
*[http://www.matesfacil.com/fractales/Julia/lleno/conjunto-de-Julia-lleno-imagenes-funcion-definicion-teorema-disco-fractal-iteraciones-ejemplos.html Conjunto de Julia Lleno]
 
*[http://www.matesfacil.com/matematicos/Cantor/biografia-Georg-Cantor-Conjunto-construccion-propiedades-demostracion-denso-longitud-compacto-limite-geometria.html Conjunto de Cantor]
 
*[http://definicion.de/fractal Definición de fractal-Qué es, significado y concepto]
 
*[http://cientifi.net/preguntas/4959/que-es-un-fractal Qué es un fractal]
 
 
*[http://html.rincondelvago.com/fractales.html Fractales]
 
*[http://html.rincondelvago.com/fractales.html Fractales]
  
  
 
[[Category:Geometría]]
 
[[Category:Geometría]]
 +
[[Category:Matemáticas aplicadas]]

Revisión del 16:33 26 mar 2025

Geometría Fractal
Información sobre la plantilla
Fractal.gif

Geometría Fractal es una rama de la geometría que estudia estructuras matemáticas que se asemejan a patrones naturales, integrando lo matemático y lo visual en un paradigma que redefine nuestra percepción de lo real. Este enfoque combina objetos matemáticos con estructuras naturales, ofreciendo un modelo que inaugura una nueva visión de lo existente.

Los fractales son objetos semi-geométricos (por su irregularidad no pertenecen a la geometría tradicional) cuya estructura básica se repite a diferentes escalas. Los fractales pueden ser creados por el hombre con intenciones artísticas o encontrarse naturalmente en estructuras como copos de nieve.

Origen e Historia

Benoît Mandelbrot, matemático francés

El matemático francés Benoît Mandelbrot desarrolló en 1975 el concepto de fractal, término derivado del latín fractus (“quebrado”). Desde entonces, los fractales han sido aceptados por la comunidad científica e incluso forman parte del diccionario de la Real Academia Española.

Antes de los años 70, la matemática fractal se consideraba una curiosidad y permanecía relegada a los márgenes. En 1919, Hausdorff ideó un método para medir dimensiones y medidas de fractales, denominado medida y dimensión Hausdorff. Un año después, Besicovitch expandió este trabajo creando la teoría geométrica de la medida.

En 1963, Edward Lorenz, meteorólogo, descubrió el efecto mariposa al redondear decimales en un programa de simulación meteorológica. Variaciones mínimas en las condiciones iniciales resultaron en resultados impredecibles, marcando el nacimiento del caos matemático.

Efecto mariposa: El aleteo de una mariposa en un lugar remoto puede desencadenar un tornado en otro. Esto muestra cómo pequeñas variaciones iniciales producen cambios impredecibles en sistemas dinámicos.

Gastón Julia (18931978) exploró las iteraciones de funciones complejas y publicó el artículo “Informe sobre la iteración de las funciones racionales” en la revista francesa Journal de Mathématiques Pures et Appliquées. Allí introdujo el conjunto de Julia.

Mandelbrot publicó The Fractal Geometry of Nature (1977, 1982, 1983), estableciendo las bases de la geometría fractal. En 1987, Michael F. Barnsley introdujo la transformación fractal, permitiendo la compresión de imágenes digitales.

Autosimilitud de los fractales

Según Mandelbrot, los fractales pueden presentar tres tipos de autosimilitud:

  • Autosimilitud exacta: El fractal resulta idéntico en cualquier escala.
  • Cuasiautosimilitud: Con el cambio de escala, las copias del conjunto son semejantes, pero no idénticas.
  • Autosimilitud estadística: El fractal conserva medidas numéricas o estadísticas con el cambio de escala.

Uso de los fractales

Compresión de imágenes

Las técnicas fractales se utilizan para la compresión de datos. Gracias al teorema del collage, es posible encontrar un IFS (sistema de funciones iteradas) que codifique la información de una figura completa en cada una de sus partes autosemejantes.

Efectos visuales

Los fractales son usados comercialmente en la industria cinematográfica, como en películas como Star Wars y Star Trek, para generar paisajes fabulosos sin necesidad de sets costosos.

Música fractal

Ciertas músicas, como las de Bach y Mozart, retienen su esencia incluso al ser reducidas. Se han desarrollado softwares para crear música fractal.

Modelado de formas naturales

Las formas fractales son comunes en la biología y permiten el desarrollo de estructuras complejas, como hojas, ramas y árboles, que muestran similitudes entre sus partes y el todo.

Sistemas dinámicos

Los fractales también aparecen en la dinámica evolutiva de sistemas complejos, reflejando ciclos de desarrollo que producen nuevas realidades más sofisticadas.

Fractal autosemejante

Son los atractores de un sistema de funciones iteradas contractivo.

Ejemplos

Pentágono de Sierpinski: Penta.png

Alfombra de Sierpinski: SierpinskiA.png

Conjunto de Mandelbrot

El conjunto de Mandelbrot incluye los puntos del plano complejo para los cuales la "sucesión de Mandelbrot" está acotada en módulo.

Ejemplos

Sucesión zn+1 = zn4+c: Mandel1.png

Sucesión zn+1 = zn-3+c: Mandel2.png

Conjunto de Julia lleno

El conjunto de Julia lleno de la función f contiene los puntos del plano complejo cuyas iteraciones no divergen.

Ejemplos

Función f(z) = z2 + c, con c= −0.8 + 0.156·i: Julia1.png

Función f(z) = z2 + c, con c= −0.4 + 0.6·i: Julia2.png

Fuente