Evolución de las especies

Revisión del 11:12 27 sep 2011 de Amancio2jc (discusión | contribuciones) (Página creada con '{{Desarrollo}} {{Definición|Nombre= Evolución de las especies|imagen= Evolución de las especies.jpg‎|concepto=Es el conjunto de transformaciones o cambios a través del tie...')
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)
Evolución de las especies
Información sobre la plantilla
260px
Concepto:Es el conjunto de transformaciones o cambios a través del tiempo que ha originado la diversidad de formas de vida que existen sobre la tierra a partir de un antepasado común.

Evolución de las especies. La hipótesis de que las especies se transforman continuamente fue postulada por numerosos científicos de los siglos XVIII y XIX, a los cuales Charles Darwin citó en el primer capítulo de su libro El origen de las especies. Sin embargo, fue el propio Darwin, en 1859, quien sintetizó un cuerpo coherente de observaciones que consolidaron el concepto de la evolución biológica en una verdadera teoría científica.

Introducción

La palabra evolución para describir cambios fue aplicada por vez primera en el siglo XVIII por el biólogo suizo Charles Bonnet en su obra Consideration sur les corps organisés. No obstante, el concepto de que la vida en la tierra evolucionó a partir de un ancestro común ya había sido formulado por varios filósofos griegos.

La evolución como una propiedad inherente a los seres vivos ya no es materia de debate entre los científicos. Los mecanismos que explican la transformación y diversificación de las especies, en cambio, se hallan todavía bajo intensa investigación. Dos naturalistas, Charles Darwin y Alfred Russel Wallace, propusieron en forma independiente en 1858 que la selección natural es el mecanismo básico responsable del origen de nuevas variantes fenotípicas y, en última instancia, de nuevas especies.

Actualmente, la teoría de la evolución combina las propuestas de Darwin y Wallace con las leyes de Mendel y otros avances posteriores en la genética; por eso se la denomina síntesis moderna o «teoría sintética». Según esta teoría, la evolución se define como un cambio en la frecuencia de los alelos de una población a lo largo de las generaciones. 

Este cambio puede ser causado por diferentes mecanismos, tales como la selección natural, la deriva genética, la mutación y la migración o flujo genético. La teoría sintética recibe en la actualidad una aceptación general de la comunidad científica, aunque también algunas críticas. Ha sido enriquecida desde su formulación, en torno a 1940, gracias a los avances de otras disciplinas relacionadas, como la biología molecular, la genética del desarrollo o la paleontología. De hecho, las teorías de la evolución, o sea, los sistemas de hipótesis basadas en datos empíricos tomados sobre organismos vivos para explicar detalladamente los mecanismos del cambio evolutivo, continúan siendo formuladas.

Evidencias del proceso evolutivo

Las evidencias del proceso evolutivo son el conjunto de pruebas que los científicos han reunido para demostrar que la evolución es un proceso característico de la materia viva y que todos los organismos que viven en la Tierra descienden de un ancestro común. Las especies actuales son un estado en el proceso evolutivo, y su riqueza relativa es el producto de una larga serie de eventos de especiación y de extinción. La existencia de un ancestro común puede deducirse a partir de características simples de los organismos.

Primero, existe evidencia proveniente de la biogeografía. El estudio de las áreas de distribución de las especies muestra que cuanto más alejadas o aisladas están dos áreas geográficas más diferentes son las especies que las ocupan, aunque ambas áreas tengan condiciones ecológicas similares (como la región ártica y la Antártida, o la región mediterránea y California).

Segundo, la diversidad de la vida sobre la tierra no se resuelve en un conjunto de organismos completamente únicos, sino que los mismos comparten una gran cantidad de similitudes morfológicas. Así, cuando se comparan los órganos de los distintos seres vivos, se encuentran semejanzas en su constitución que señalan el parentesco que existe entre las especies.

Estas semejanzas y su origen permiten clasificar a los órganos en homólogos, si tienen un mismo origen embrionario y evolutivo, y análogos, si tienen diferente origen embrionario y evolutivo pero la misma función. Tercero, los estudios anatómicos también permiten reconocer en muchos organismos la presencia de órganos vestigiales, que están reducidos y no tienen función aparente, pero que muestran claramente que derivan de órganos funcionales presentes en otras especies, tales como los huesos rudimentarios de las patas posteriores presentes en algunas serpientes.

La embriología, a través de los estudios comparativos de las etapas embrionarias de distintas clases de animales ofrecen el cuarto conjunto de evidencias del proceso evolutivo. Se ha encontrado que en las primeras de estas etapas del desarrollo, muchos organismos muestran características comunes que sugieren la existencia de un patrón de desarrollo compartido entre ellas, que a su vez, demuestra la existencia de un antepasado común.

El sorprendente hecho de que los embriones tempranos de mamíferos posean hendiduras branquiales, las que luego desaparecen conforme avanza el desarrollo, demuestra que los mamíferos se hallan emparentados con los peces.


El quinto grupo de evidencias proviene del campo de la sistemática. Los organismos pueden ser clasificados usando las similitudes mencionadas en grupos anidados jerárquicamente, muy similares a un árbol genealógico. Si bien las investigaciones modernas sugieren que, debido a la transferencia horizontal de genes, este árbol de la vida puede ser más complicado que lo que se pensaba, ya que muchos genes se han distribuido independientemente entre especies distantemente relacionadas. Las especies que han vivido en épocas remotas han dejado registros de su historia evolutiva. Los fósiles, conjuntamente con la anatomía comparada de los organismos actuales, constituyen la evidencia paleontológica del proceso evolutivo. Mediante la comparación de las anatomías de las especies modernas con las ya extintas, los paleontólogos pueden inferir los linajes a los que unas y otras pertenecen. Sin embargo, la aproximación paleontológica para buscar evidencia evolutiva tiene ciertas limitaciones. De hecho, es particularmente útil solo en aquellos organismos que presentan partes del cuerpo duras, tales como caparazones, dientes o huesos. Más aún, ciertos otros organismos, como los procariotas —las bacterias y arqueas— presentan una cantidad limitada de características comunes, por lo que sus fósiles no proveen información sobre sus ancestros. Una aproximación más reciente para hallar evidencia que respalde el proceso evolutivo es el estudio de las similitudes bioquímicas entre los organismos. Por ejemplo, todas las células utilizan el mismo conjunto básico de nucleótidos y aminoácidos.[18] El desarrollo de la genética molecular ha revelado que el registro evolutivo reside en el genoma de cada organismo y que es posible datar el momento de la divergencia de las especies a través del reloj molecular producido por las mutaciones.[19] Por ejemplo, la comparación entre las secuencias del ADN del humano y del chimpancé ha confirmado la estrecha similitud entre las dos especies y han arrojado luz acerca de cuando existió el ancestro común de ambas.


La evolución de la vida en la Tierra


Árbol filogenético mostrando la divergencia de las especies modernas de su ancestro común en el centro.[30] Los tres dominios están coloreados de la siguiente forma; las bacterias en azul, las arqueas en verde y las eucariotas de color rojo. Detallados estudios químicos basados en isótopos de carbono de rocas del eón Arcaico sugieren que las primeras formas de vida emergieron en la tierra probablemente hace más de 3800 millones de años, en la era Eoarcaica, y hay claras evidencias geoquímicas tales como la reducción microbiana de sulfatos que la atestiguan en la era Paleoarcaica, hace 3470 millones de años. Los estromatolitos —capas de roca producidas por comunidades de microorganismos— más antiguos se conocen en estratos de 3450 millones de años, mientras que los microfósiles filiformes más antiguos, morfológicamente similares a cianobacterias, se encuentran en estratos de sílex de 3450 millones de años hallados en Australia.

El siguiente cambio sustantivo en la estructura celular lo constituyen los eucariotas, los cuales surgieron a partir de bacterias antiguas envueltas, incluidas, en la estructura de los ancestros de las células eucariotas, formando una asociación cooperativa denominada endosimbiosis.

Las bacterias envueltas y su célula hospedante iniciaron un proceso de coevolución, por el cual las bacterias originaron las mitocondrias o hidrogenosomas. Un segundo evento independiente de endosimbiosis con organismos similares a cianobacterias llevó a la formación de los cloroplastos en las algas y plantas. La evidencia tanto bioquímica como paleontológica indica que las primeras células eucarióticas surgieron hace unos 2000 a 1500 millones de años, a pesar de que los atributos clave de la fisiología de los eucariotas probablemente evolucionaron previamente. La historia de la vida sobre la Tierra fue la de los eucariotas unicelulares, procariotas y arqueas hasta hace aproximadamente 610 millones de años, momento en el que los primeros organismos multicelulares aparecieron en los océanos en el período denominado Ediacárico.[37][44][45] Algunos organismos ediacáricos podrían haber estado estrechamente relacionados con grupos que más adelante se convertirían en prominentes; tales como los poríferos o los nidarios.

La evolución de los organismos pluricelulares ocurrió entonces en múltiples eventos independientes, en organismos tan diversos como las esponjas, algas pardas, cianobacterias, hongos mucosos y mixobacterias. Poco después de la aparición de estos primeros organismos multicelulares, una gran diversidad biológica apareció en un período de diez millones de años, en un evento denominado explosión cámbrica, un lapso breve en términos geológicos pero que implicó una diversificación animal sin paralelo y el cual está documentado en los fósiles encontrados en los sedimentos de Burgess Shale, Canadá).

Teorías científicas acerca de la evolución

Según Joseph Needham, el taoísmo niega explícitamente la fijeza de las especies biológicas y los filósofos taoístas especularon que las mismas han desarrollado diferentes atributos en respuesta a distintos entornos. De hecho, el taoísmo se refiere a los seres humanos, la naturaleza y el cielo como existentes en un estado de «constante transformación», en contraste con la visión más estática de la naturaleza típica del pensamiento occidental.


Si bien la idea de la evolución biológica ha existido desde épocas remotas y en diferentes culturas, la teoría moderna no se estableció hasta llegados los siglos XVIII y XIX, con la contribución de científicos como Christian Pander, Jean-Baptiste Lamarck y Charles Darwin. En el siglo XVIII la oposición entre fijismo y transformismo fue ambigua. Algunos autores, por ejemplo, admitieron la transformación de las especies limitada a los géneros, pero negaban la posibilidad de pasar de un género a otro.

Otros naturalistas hablaban de «progresión» en la naturaleza orgánica, pero es muy difícil determinar si con ello hacían referencia a una transformación real de las especies o se trataba, simplemente, de una modulación de la clásica idea de la scala naturae. No fue hasta la publicación de El origen de las especies de Charles Darwin cuando el hecho de la evolución comenzó a ser ampliamente aceptado. Una carta de Alfred Russel Wallace, en la cual revelaba su propio descubrimiento de la selección natural, impulsó a Darwin a publicar su trabajo en evolución. Por lo tanto, a veces se comparte el crédito con Wallace por la teoría de la evolución (a veces llamada también teoría de Darwin-Wallace). A mediados de la década de 1970, Motoo Kimura formuló la teoría neutralista de la evolución molecular, estableciendo de manera firme la importancia de la deriva génica como el principal mecanismo de la evolución. Hasta la fecha continúan los debates en esta área de investigación. Uno de los más importantes es acerca de la teoría del equilibrio puntuado, una teoría propuesta por Niles Eldredge y Stephen Jay Gould para explicar la escasez de formas transicionales entre especies.

Darwinismo

Charles Darwin, padre de la teoría de la evolución por selección natural.Imagen Históricamente, este estado del pensamiento evolutivo está representado por la publicación en agosto de 1858 de un trabajo conjunto de Darwin y Wallace, al que siguió en 1859 el libro de Darwin, El origen de las especies, el cual específicamente se refiere al principio de la selección natural como el motor más importante del proceso evolutivo.


Sin embargo, Darwin fue el primero en resumir un conjunto coherente de observaciones que solidificó el concepto de la evolución de la vida en una verdadera teoría científica, es decir, en un sistema de hipótesis. La lista de las propuestas de Darwin, extractada a partir de El origen de las especies se expone a continuación: 1. Los actos sobrenaturales del Creador son incompatibles con los hechos empíricos de la naturaleza. 2. Toda la vida evolucionó a partir de una o de pocas formas simples de organismos. 3. Las especies evolucionan a partir de variedades preexistentes por medio de la selección natural. 4. El nacimiento de una especie es gradual y de larga duración. 5. Los taxones superiores (géneros, familias, etc.) evolucionan a través de los mismos mecanismos que los responsables del origen de las especies. 6. Cuanto mayor es la similitud entre los taxones, más estrechamente relacionados se hallan entre sí y más corto es el tiempo de su divergencia desde el último ancestro común. 7. La extinción es principalmente el resultado de la competencia interespecífica. 8. El registro geológico es incompleto: la ausencia de formas de transición entre las especies y taxones de mayor rango se debe a las lagunas en el conocimiento actual.

Neodarwinismo

Neodarwinismo es un término acuñado en 1895 por el naturalista y psicólogo inglés George John Romanes (1848-1894) en su obra Darwin and after Darwin. El término describe un estado en el desarrollo de la teoría evolutiva que se remonta al citólogo y zoólogo germano August Weismann (1834-1914), quien en 1892 proveyó evidencia experimental en contra de la herencia lamarckiana y postuló que la reproducción sexual en cada generación crea una nueva y variable población de individuos. La selección natural, entonces, puede actuar sobre esa variabilidad y determina el curso del cambio evolutivo.

Por lo tanto, el neodarwinismo o sea, la ampliación de la teoría de Darwin enriqueció el concepto original de Darwin haciendo foco en el modo en que la variabilidad se genera y excluyendo la herencia lamarckiana como una explicación viable del mecanismo de herencia. Wallace, quien popularizó el término «darwinismo» para 1889, incorporó plenamente las nuevas conclusiones de Weismann y fue, por consiguiente, uno de los primeros proponentes del neodarwinismo. 

Síntesis evolutiva moderna

La llamada «síntesis evolutiva moderna» es una robusta teoría que actualmente proporciona explicaciones y modelos matemáticos sobre los mecanismos generales de la evolución o los fenómenos evolutivos, como la adaptación o la especiación. Como cualquier teoría científica, sus hipótesis están sujetas a constante crítica y comprobación experimental. Theodosius Dobzhansky, uno de los fundadores de la síntesis moderna, definió la evolución del siguiente modo: «La evolución es un cambio en la composición genética de las poblaciones. El estudio de los mecanismos evolutivos corresponde a la genética poblacional.» Las unidades de la evolución son las poblaciones de organismos y no los tipos. Este esquema de pensamiento llevó al «concepto biológico de especie» desarrollado por Mayr en 1942: una comunidad de poblaciones que se entrecruzan y que está reproductivamente aislada de otras comunidades. La variabilidad fenotípica y genética en las poblaciones de plantas y de animales se produce por recombinación genética —reorganización de segmentos de cromosomas— como resultado de la reproducción sexual y por las mutaciones que ocurren aleatoriamente. La cantidad de variación genética que una población de organismos con reproducción sexual puede producir es enorme. Considérese la posibilidad de un solo individuo con un número «N» de genes, cada uno con sólo dos alelos. Este individuo puede producir 2N espermatozoides u óvulos genéticamente diferentes. Debido a que la reproducción sexual implica dos progenitores, cada descendiente puede, por tanto, poseer una de las 4N combinaciones diferentes de genotipos. Así, si cada progenitor tiene 150 genes con dos alelos cada uno —una subestimación del genoma humano—, cada uno de los padres puede dar lugar a más de 1045 gametos genéticamente diferentes y más de 1090 descendientes genéticamente diferentes —un número muy cercano a las estimaciones del número total de partículas en el universo observable—. La selección natural es la fuerza más importante que modela el curso de la evolución fenotípica. En ambientes cambiantes, la selección direccional es de especial importancia, porque produce un cambio en la media de la población hacia un fenotipo novel que se adapta mejor las condiciones ambientales alteradas. Además, en las poblaciones pequeñas, la deriva génica aleatoria —la pérdida de genes del pozo genético— puede ser significativa. La especiación puede ser definida como «un paso en el proceso evolutivo (en el que) las formas... se hacen incapaces de hibridarse».[Diversos mecanismos de aislamiento reproductivo han sido descubiertos y estudiados con profundidad. El aislamiento geográfico de la población fundadora se cree que es responsable del origen de las nuevas especies en las islas y otros hábitats aislados. La especiación alopátrica —evolución divergente de poblaciones que están geográficamente aislados unas de otras— es probable que sea el mecanismo de especiación predominante en el origen de muchas especies de animales. Las transiciones evolutivas en estas poblaciones suelen ser graduales, es decir, las nuevas especies evolucionan a partir de las variedades preexistentes por medio de procesos lentos y en cada etapa se mantiene su adaptación específica. La macroevolución —la evolución filogenética por encima del nivel de especie o la aparición de taxones superiores— es un proceso gradual, paso a paso, que no es más que la extrapolación de la microevolución —el origen de las razas, variedades y de las especies—. En la época de Darwin los científicos no conocían cómo se heredaban las características. Actualmente, el origen de la mayoría de las características hereditarias puede ser trazado hasta entidades persistentes llamadas genes, codificados en moléculas lineales de ácido desoxirribonucleico (ADN) del núcleo de las células. El ADN varía entre los miembros de una misma especie y también sufre cambios o mutaciones, o variaciones que se producen a través de procesos como la recombinación genética. Mutación Darwin no conocía la fuente de las variaciones en los organismos individuales, pero observó que las mismas parecían ocurrir aleatoriamente. En trabajos posteriores se atribuyó la mayor parte de estas variaciones a la mutación. La mutación es un cambio permanente y transmisible en el material genético —usualmente el ADN o el ARN— de una célula, que puede ser producido por «errores de copia» en el material genético durante la división celular y por la exposición a radiación, químicos o la acción de virus. Las mutaciones aleatorias ocurren constantemente en el genoma de todos los organismos, creando nueva variabilidad genética. La duplicación génica introduce en el genoma copias extras de un gen y, de ese modo, proporciona el material de base para que las nuevas copias inicien su propio camino evolutivo. Por ejemplo, en los seres humanos son necesarios cuatro genes para construir las estructuras necesarias para sensar la luz: tres para la visión de los colores y uno para la visión nocturna. Los cuatro genes han evolucionado a partir de un solo gen ancestral por duplicación y posterior divergencia. Asimismo, los genes duplicados pueden divergir lo suficiente como para adquirir nuevas funciones debido a que la copia original continua realizando la función inicial. Otros tipos de mutación pueden ocasionalmente crear nuevos genes a partir del denominado ADN no codificante. La creación de nuevos genes puede también involucrar pequeñas partes de varios genes que se han duplicado, las que recombinan para formar nuevas secuencias de ADN con nuevas funciones. Las mutaciones cromosómicas —también denominadas, aberraciones cromosómicas— son una fuente adicional de variabilidad hereditaria. Así, las translocaciones, inversiones, deleciones, translocaciones robertsonianas y duplicaciones, usualmente ocasionan variantes fenotípicas que se transmiten a la descendencia. Por ejemplo, dos cromosomas del género Homo se fusionaron para producir el cromosoma 2 de los seres humanos. Tal fusión cromosómica no ocurrió en los linajes de otros simios, los que han retenido ambos cromosomas separados. No obstante las consecuencias fenotípicas que pueden tener tales mutaciones cromosómicas, el papel evolutivo más importante de las mismas es el de acelerar la divergencia de las poblaciones que presentan diferencias en su constitución cromosómica. Debido a que los individuos heterocigóticos para las aberraciones cromosómicas son en general semiestériles, el flujo génico entre poblaciones que se diferencien para rearreglos cromosómicos estará severamente reducido. De este modo, las mutaciones cromosómicas actúan como mecanismos de aislamiento reproductivo que permiten que las diferentes poblaciones mantengan su identidad a través del tiempo. Recombinación genética La recombinación genética es el proceso mediante el cual la información genética se redistribuye por transposición de fragmentos de ADN entre dos cromosomas durante la meiosis —y más raramente en la mitosis—. Los efectos son similares a los de las mutaciones, es decir, si los cambios no son deletéreos se transmiten a la descendencia y contribuyen a incrementar la diversidad dentro de cada especie. En los organismos asexuales, los genes se heredan en conjunto, o ligados, ya que no se mezclan con los de otros organismos durante los ciclos de recombinación que usualmente se producen durante la reproducción sexual. En contraste, los descendientes de los organismos que se reproducen sexualmente contienen una mezcla aleatoria de los cromosomas de sus progenitores, la cual se produce durante la recombinación meiótica y la posterior fecundación. La recombinación no altera las frecuencias alélicas sino que modifica la asociación existente entre alelos pertenecientes a genes diferentes, produciendo descendientes con combinaciones únicas de genes. La recombinación generalmente incrementa la variabilidad genética y puede incrementar también las tasas de evolución. No obstante, la existencia de organismos asexuales indica que este modo de reproducción puede también ser ventajoso en ciertos ambientes, tal como ocurre en las plantas apomícticas o en los animales partenogenéticos.[125]Jens Christian Clausen fue uno de los primeros en reconocer formalmente que la apomixis, particularmente la apomixis facultativa, no necesariamente conduce a una pérdida de variabilidad genética y de potencial evolutivo. Utilizando una analogía entre el proceso adaptativo y la producción a gran escala de automóviles, Clausen arguyó que una combinación de sexualidad (que permite la producción de nuevos genotipos) y de apomixis (que permite la producción ilimitada de los genotipos más adaptados) podría incrementar, más que disminuir, la capacidad de una especie para el cambio adaptativo. La recombinación permite que aún los genes que se hallan juntos en el mismo cromosoma puedan heredarse independientemente. No obstante, la tasa de recombinación es baja —aproximadamente dos eventos por cromosoma y por generación—. Como resultado, los genes que se hallan físicamente cercanos entre sí tienden a heredarse en forma conjunta, un fenómeno que se denomina ligamiento.] Un grupo de alelos que usualmente se heredan conjuntamente por hallarse ligados se denominan haplotipo. Cuando en un haplotipo uno de los alelos es altamente beneficioso la selección natural puede conducir a un barrido selectivo que causará que los otros alelos dentro del haplotipo se hagan más comunes dentro de la población; este efecto se denomina arrastre por ligamiento o «efecto autostop» (en inglés, genetic hitchhiking). Cuando los alelos no pueden ser separados por recombinación, tal como ocurre en el caso del cromosoma Y de los mamíferos o en las poblaciones de organismos asexuales, los genes con mutaciones deletéreas pueden acumularse, lo que se denomina trinquete de Muller . De este modo, al romper los conjuntos de genes ligados, la reproducción sexual permite la remoción de las mutaciones perjudiciales y la retención de las beneficiosas.[131] Además, la recombinación y redistribución de los genes puede producir individuos con combinaciones genéticas nuevas y favorables. Estos efectos positivos se balancean con el hecho de que el sexo reduce la tasa reproductiva de las poblaciones de organismos sexuales y puede quebrar el ligamiento existente entre combinaciones favorables de genes. Este costo del sexo fue definido por primera vez en términos matemáticos por John Maynard Smith. En todas las especies sexuales, y con la excepción de los organismos hermafroditas, cada población está constituida por individuos de dos sexos, de los cuales solo uno es capaz de engendrar la prole. En una especie asexual, en cambio, todos los miembros de la población son capaces de engendrar descendencia. Es to implica que en cada generación una población asexual puede crecer más rápidamente. Un costo adicional del sexo es que los machos y las hembras deben buscarse entre ellos para aparearse y la selección sexual suele favorecer caracteres que reducen la aptitud de los individuos.[132][131] Las razones de la evolución de la reproducción sexual son todavía poco claras y es un interrogante que constituye un área activa de investigación en Biología evolutiva,[133][134] que ha inspirado ideas tales como la hipótesis de la Reina Roja.[135] Esta hipótesis, cuyo nombre fue popularizado por el escritor científico Matt Ridley en su libro The Red Queen: Sex and the Evolution of Human Nature, sostiene que los organismos se hallan involucrados en una carrera armamentista cíclica con sus parásitos lo que permite especular que el papel del sexo es el de preservar los genes que pueden ser circunstancialmente desfavorables pero potencialmente beneficiosos en el futuro ante futuros cambios en las poblaciones parásitas. Para comprender los mecanismos que hacen que evolucione una población, es útil conocer las condiciones necesarias para que la población no evolucione. El principio de Hardy-Weinberg determina que la frecuencia de los alelos de una población suficientemente grande permanecerá constante solo si la única fuerza que actúa es la recombinación aleatoria de alelos durante la formación de los gametos y la posterior combinación de los mismos durante la fertilización. En ese caso, la población se encuentra en equilibrio de Hardy-Weinberg y, por lo tanto, no evoluciona. Flujo genético


Cuando los leones machos alcanzan la madurez sexual, abandonan el grupo en el que nacieron y se establecen en otra manada para aparearse, lo que asegura el flujo génico entre manadas.[139] El flujo genético es el intercambio de genes entre poblaciones, usualmente de la misma especie. El flujo génico dentro de una especie se puede producir por la inmigración y posterior cruzamiento de individuos de otras poblaciones o, simplemente, por el intercambio de polen entre poblaciones diferentes. La transferencia de genes entre especies involucra la formación de híbridos o la transferencia horizontal de genes.[140] La inmigración y la emigración de individuos en las poblaciones naturales pueden causar cambios en las frecuencias alélicas, como así también, la introducción —o remoción— de variantes alélicas dentro de un acervo genético ya establecido. Las separaciones físicas en el tiempo, espacio o nichos ecológicos específicos que puede existir entre las poblaciones naturales restringen o imposibilitan el flujo génico. Además de estas restricciones al intercambio de genes entre poblaciones existen otras —denominadas mecanismos de aislamiento reproductivo— las cuales son el conjunto de características, comportamientos y procesos fisiológicos que impiden que los miembros de dos especies diferentes puedan cruzarse o aparearse entre sí, producir descendencia o que la misma sea viable o fértil. Dependiendo de la distancia en la que dos especies han divergido desde su ancestro común más reciente, todavía puede ser posible que las mismas sean interfértiles, como es el caso del apareamiento entre la yegua y el asno para producir la mula.[145] Tales híbridos son generalmente estériles, debido a las diferencias cromosómicas entre las especies parentales y a la incapacidad de los mismos de aparearse correctamente durante la meiosis. En este caso, las especies estrechamente relacionadas pueden cruzarse con regularidad, pero los híbridos serán seleccionados en contra. Sin embargo, de vez en cuando se forman híbridos viables y fértiles, los que pueden presentar propiedades intermedias entre sus especies paternales, o poseer un fenotipo totalmente nuevo. La importancia de la hibridación en la creación de nuevas especies de animales no es tan clara, aunque existen ejemplos bien documentados como el de la rana Hyla versicolor. La hibridación es, sin embargo, un mecanismo importante de formación de nuevas especies en las plantas, ya que la poliploidía —la duplicación de todo el juego de cromosomas de un organismo— es tolerada más fácilmente en las plantas que en los animales, y restaura la fertilidad en los híbridos interespecíficos debido a que cada cromosoma es capaz de aparearse con un compañero idéntico durante la meiosis.[151][152] Selección natural Selección natural


Diagrama que muestra como interaccionan las mutaciones y la selección natural para originar cambios en las poblaciones de organismos.


Las formas typica y carbonaria de la polilla Biston betularia posadas sobre el mismo tronco. La forma typica de color claro es difícilmente observable en este árbol que no se halla ennegrecido por el hollín, lo que la camufla de los depredadores tales como Parus major. La selección natural es el proceso por el cual las mutaciones genéticas que mejoran la capacidad reproductiva se vuelven, y permanecen, cada vez más frecuentes en las sucesivas generaciones de una población. Se la califica a menudo de «mecanismo autoevidente», pues es la consecuencia necesaria de tres hechos simples: (a) dentro de las poblaciones de organismos hay variación heredable, (b) los organismos producen más descendientes de los que pueden sobrevivir, y (c) tales descendientes tienen diferentes capacidades para sobrevivir y reproducirse. El concepto central de la selección natural es la aptitud biológica de un organismo. La aptitud, ajuste o adecuación se trata de la medida de la contribución genética de un organismo a la generación siguiente. Sin embargo, la aptitud no es simplemente igual al número total de descendientes de un determinado organismo, ya que también cuantifica la proporción de generaciones posteriores que llevan los genes de ese organismo. Por ejemplo, si un organismo puede sobrevivir y reproducirse pero sus descendientes son demasiado pequeños o enfermizos como para llegar a la edad reproductiva, la contribución genética de ese organismo a las futuras generaciones será muy baja y, por ende, su aptitud también lo es. Por consiguiente, si un alelo aumenta la aptitud más que otros alelos del mismo gen, con cada generación el alelo será más común dentro de la población. Se dice que tales rasgos son «seleccionados a favor». Ejemplos de rasgos que pueden aumentar la aptitud son una mejora de la supervivencia o una mayor fecundidad. En cambio, la menor aptitud causada por un alelo menos beneficioso o deletéreo hace que el alelo sea cada vez más raro y se dice que es «seleccionado en contra». Hay que subrayar que la aptitud de un alelo no es una característica fija, si el ambiente cambia, los rasgos que antes eran neutros o nocivos pueden ser beneficiosos, y viceversa. Por ejemplo, la polilla Biston betularia presenta dos colores, uno claro denominado forma typica y otro oscuro llamado forma carbonaria. La forma typica, como su nombre indica, es la más frecuente en esta especie. No obstante, durante la revolución industrial en el Reino Unido los troncos de muchos de los árboles en los que las polillas se posaban resultaron ennegrecidos por el hollín, lo que les proporcionaba una ventaja a las polillas de color oscuro para pasar desapercibidas de los depredadores. Esto dio a las polillas de la forma melanica una mayor oportunidad de sobrevivir para producir más descendientes de color oscuro. En sólo cincuenta años luego de que la primer polilla melánica fuese descubierta, casi la totalidad de las polillas del área industrial de Manchester eran oscuras. Este proceso fue revertido por el efecto de la «Ley de Aire Limpio» (Clean Air Act) de 1956 por la cual se redujo la polución industrial y las polillas oscuras, más fácilmente visibles por los depredadores, volvieron a ser escasas nuevamente. Sin embargo, aunque la dirección de la selección cambie, los rasgos que se hubiesen perdido en el pasado pueden no reobtenerse nuevamente de forma idéntica —situación que describe la Ley de Dollo o «Ley de la irreversibilidad evolutiva. De acuerdo con esta hipótesis, una estructura u órgano que se ha perdido o descartado en el durante el transcurso de la evolución no volverá a aparecer en ese mismo linaje de organismos. Según Richard Dawkins, esta hipótesis es «una declaración sobre la improbabilidad estadística de seguir exactamente la misma trayectoria evolutiva dos veces o, de hecho, una misma trayectoria particular en ambas direcciones». Dentro de una población, la selección natural para un determinado rasgo que varía en forma continua, como la altura, se puede categorizar en tres tipos diferentes. El primero es la «selección direccional», que es un cambio en el valor medio de un rasgo a lo largo del tiempo; por ejemplo, cuando los organismos cada vez son más altos En segundo lugar se halla la «selección disruptiva» que es la selección de los valores extremos de un determinado rasgo, lo que a menudo determina que los valores extremos sean más comunes y que la selección actúe en contra del valor medio. Esto implicaría que los organismos bajos y altos tengan una ventaja, pero los de altura media no. Finalmente, en la «selección estabilizadora», la selección actúa en contra de los valores extremos, lo que determina una disminución de la varianza alrededor del promedio y una menor variabilidad de la población para ese carácter en particular. Esto haría, por ejemplo, que todos los organismos de una población, paulatinamente, adquirieran una altura similar. Un tipo especial de selección natural es la selección sexual, que es la selección a favor de cualquier rasgo que aumente el éxito reproductivo haciendo aumentar el atractivo de un organismo ante parejas potenciales. Los rasgos que evolucionaron mediante la selección sexual son especialmente prominentes en los machos de algunas especies, aunque ciertos rasgos —tales como cuernos voluminosos, cantos de apareamiento o colores brillantes— puedan atraer a los predadores, reduciendo las posibilidades de supervivencia de los machos. No obstante, esta desventaja reproductiva se compensa por un mayor éxito reproductivo de los machos que presentan estos rasgos sexualmente seleccionados. Un área de estudio activo es la denominada «unidad de selección»; se ha dicho que la selección natural actúa a nivel de genes, células, organismos individuales, grupos de organismos e incluso especies. Ninguno de estos modelos es mutuamente exclusivo, y la selección puede actuar en múltiples niveles a la vez. Por ejemplo, debajo del nivel del individuo, hay genes denominados transposones que intentan replicarse en todo el genoma. La selección por sobre el nivel del individuo, como la selección de grupo, puede permitir la evolución de la cooperación. Deriva genética

Simulación de la deriva genética de veinte alelos no enlazados en poblaciones de 10 (arriba) y 100 (abajo). La deriva hacia la fijación es más rápida en la población pequeña. La deriva genética es el cambio en la frecuencia de los alelos entre una generación y la siguiente, y tiene lugar porque los alelos de la descendencia son una muestra aleatoria de los padres, y por el papel que juega el azar en la hora de determinar si un ejemplar determinado sobrevivirá y se reproducirá.En términos matemáticos, los alelos están sujetos a errores de muestreo. Como resultado de ello, cuando las fuerzas selectivas están ausentes o son relativamente débiles, la frecuencia de los alelos tiende a «derivar» hacia arriba o hacia abajo aleatoriamente (en un paseo aleatorio). Esta deriva se detiene cuando un alelo se convierte finalmente fijado, es decir, o bien desaparece de la población, o bien sustituye totalmente el resto de genes. Así pues, la deriva genética puede eliminar algunos alelos de una población simplemente debido al azar. Incluso en la ausencia de fuerzas selectivas, la deriva genética puede hacer que dos poblaciones separadas que empiezan con la misma estructura genética se separen en dos poblaciones divergentes con un conjunto de alelos diferentes. El tiempo necesario para que un alelo quede fijado por la deriva genética depende del tamaño de la población; la fijación tiene lugar más rápido en poblaciones más pequeñas. La medida precisa de las poblaciones que es importante en este caso recibe el nombre de tamaño poblacional efectivo, que fue definida por Sewall Wright como el número teórico de ejemplares reproductivos que presenten el mismo grado observado de consanguinidad. Aunque la selección natural es responsable de la adaptación, la importancia relativa de las dos fuerzas, selección natural y deriva genética, como impulsoras del cambio evolutivo en general es actualmente un campo de investigación en la biología evolutiva. Estas investigaciones fueron inspiradas por la teoría neutralista de la evolución molecular, que postula que la mayoría de cambios evolutivos son el resultado de la fijación de mutaciones neutras, que no tienen ningún efecto inmediato sobre la aptitud de un organismo. Por tanto, en este modelo, la mayoría de los cambios genéticos en una población son el resultado de una presión de mutación constante y de deriva genética. Las consecuencias de la evolución Adaptación La adaptación es el proceso mediante el cual una población se adecua mejor a su hábitat y también el cambio en la estructura o en el funcionamiento de un organismo que lo hace más adecuado a su entorno. Este proceso tiene lugar durante muchas generaciones, se produce por selección natural, y es uno de los fenómenos básicos de la biología. La importancia de una adaptación sólo puede entenderse en relación con el total de la biología de la especie. Julian Huxley. De hecho, un principio fundamental de la ecología es el denominado principio de exclusión competitiva: dos especies no pueden ocupar el mismo nicho en el mismo ambiente por un largo tiempo. En consecuencia, la selección natural tenderá a forzar a las especies a adaptarse a diferentes nichos ecológicos para reducir al mínimo la competencia entre ellas. La adaptación es, en primer lugar, un proceso en lugar de una parte física de un cuerpo. La distinción puede apreciarse, por ejemplo, en los trematodos —parásitos internos con estructuras corporales muy simples pero con un ciclo de vida muy complejo— en los que sus adaptaciones a un medio ambiente tan inusual no son el producto de caracteres observables a simple vista sino en aspectos críticos de su ciclo vital. Sin embargo, el concepto de adaptación también incluye aquellos aspectos de los organismos, de las poblaciones o de las especies que son el resultado del proceso adaptativo. Mediante la utilización del término «adaptación» para el proceso evolutivo y «rasgo o carácter adaptativo» para el producto del mismo, los dos sentidos del concepto se distinguen perfectamente. Las definiciones de estos conceptos, debidas a Theodosius Dobzhansky, son básicas. Así, la «adaptación» es el proceso evolutivo por el cual un organismo se vuelve más capaz de vivir en su hábitat o hábitats, mientras que la «adaptabilidad» es el estado de estar adaptado, o sea, el grado en que un organismo es capaz de vivir y reproducirse en un determinado conjunto de hábitats. Finalmente, un «carácter adaptativo» es uno de los aspectos del patrón de desarrollo de un organismo, el cual le permite o le incrementa la probabilidad de sobrevivir y reproducirse. La adaptación puede causar ya sea la ganancia de una nueva característica o la pérdida de una función ancestral. Un ejemplo que muestra los dos tipos de cambio es la adaptación de las bacterias a la selección por antibióticos, con cambios genéticos que causan resistencia a los antibióticos debido a que se modifica la diana de la droga o por el aumento de la actividad de los transportadores que extraen la droga fuera de la célula. Otros ejemplos notables son la evolución en laboratorio de las bacterias Escherichia coli para que puedan ser capaces de utilizar el ácido cítrico como un nutriente, cuando las bacterias de tipo silvestre no lo pueden hacer, la evolución de una nueva enzima en Flavobacterium que permite que estas bacterias puedan crecer en los subproductos de la fabricación del nylon,[195][196] y la evolución de una vía metabólica completamente nueva en la bacteria del suelo Sphingobium que le permite degradar el pesticida sintético pentaclorofenol. Una idea interesante, aunque todavía controvertida, es que algunas adaptaciones pueden aumentar la capacidad de los organismos para generar diversidad genética y para adaptarse por selección natural o sea, aumentarían la capacidad de evolución.

Un esqueleto de ballena, a y b huesos de la aleta, los cuales son adaptaciones de huesos de patas delanteras, mientras que c indica los huesos vestigiales de las patas traseras, lo que sugiere una adaptación desde el hábito terrestre al acuático. La adaptación se produce a través de la modificación gradual de las estructuras existentes. En consecuencia, las estructuras con organización interna similar pueden tener diferentes funciones en organismos relacionados. Este es el resultado de una sola estructura ancestral que ha sido adaptada para funcionar de diferentes formas. Los huesos de las alas de los murciélagos, por ejemplo, son muy similares a los de los pies del ratón y los de las manos de los primates, debido a que todas estas estructuras descienden a partir de un ancestro común de los mamíferos. Dado que todos los organismos vivos están relacionados en cierta medida, incluso los órganos que parecen tener una estructura poco o nada similar, como los ojos de los artrópodos, del calamar y de los vertebrados, o las extremidades y las alas de artrópodos y vertebrados, pueden depender de un conjunto común de genes homólogos que controlan su montaje y funcionamiento, lo que se denomina homología profunda. Durante la adaptación, algunas estructuras pueden perder su función original y convertirse en estructuras vestigiales. Estas estructuras pueden carecer de funcionalidad en una especie actual, sin embargo, pueden haber tenido una clara función en la especie ancestral o en otras especies estrechamente relacionadas. Los ejemplos incluyen pseudogenes, los restos no funcionales de los ojos de los peces cavernícolas ciegos, las alas en las especies de aves que no vuelany la presencia de huesos de la cadera en las ballenas y en las serpientes. En los seres humanos también existen ejemplos de estructuras vestigiales, las que incluyen las muelas de juicio, el coxis, el apéndice vermiforme, e incluso, vestigios de comportamiento tales como la piel de gallina y otros reflejos primitivos. Sin embargo, muchos rasgos que parecen ser simples adaptaciones son, de hecho, exaptaciones: estructuras originalmente adaptadas para una función, pero que coincidentemente se hicieron útiles para alguna otra función durante el proceso. Un ejemplo es el lagarto africano Holaspis guentheri que desarrolló una cabeza muy plana para esconderse en las grietas, hecho que puede observarse en sus parientes cercanos. Sin embargo, en esta especie, la cabeza se ha convertido en tan aplastada que le permite deslizarse de árbol en árbol. Las vejigas natatorias de los peces teleósteos son otro ejemplo de exaptación ya que, si bien derivan directamente de los pulmones de los peces pulmonados ancestrales, son empleadas como regulador de la flotación. Un área de investigación actual en biología evolutiva del desarrollo es la base del desarrollo de las adaptaciones y de las exaptaciones. Esta área de investigación aborda el origen y la evolución de desarrollo embrionario y de qué modo las modificaciones de los procesos de desarrollo generan nuevas características. Estos estudios han demostrado que la evolución puede alterar el desarrollo para crear nuevas estructuras, tales como las estructuras óseas de los embriones que se desarrollan en la mandíbula en algunos animales, en cambio forman parte del oído medio en los mamíferos. También es posible que las estructuras que se han perdido en la evolución vuelvan a aparecer debido a los cambios que se producen en los genes del desarrollo, como por ejemplo una mutación en los pollos que determina que los embriones desarrollen dientes similares a los de cocodrilos. De hecho, es cada vez es más claro que la mayoría de las alteraciones en la forma de los organismos se deben a cambios en un pequeño conjunto de genes conservados. Coevolución La interacción entre organismos puede producir conflicto o cooperación. Cuando interactúan dos especies diferentes, como un patógeno y un hospedador, o un depredador y su presa, las especies pueden desarrollar conjuntos de adaptaciones complementarias. En este caso, la evolución de una especie provoca adaptaciones en la otra. A su vez, estos cambios en la segunda especie provocan adaptaciones en la primera. Este ciclo de selección y respuesta recibe el nombre de coevolución. Un ejemplo es la producción de tetradotoxina por parte del tritón de Oregón y la evolución de una resistencia a esta toxina en su predador, la serpiente de jarretera. En esta pareja predador-presa, la carrera armamentista evolutiva ha producido niveles altos de toxina en el tritón, y los correspondientes niveles altos de resistencia en la serpiente. Especiación La especiación (o cladogénesis) es el proceso por el cual una especie diverge en dos o más especies descendientes Los biólogos evolutivos ven las especies como fenómenos estadísticos y no como categorías o tipos. Este planteamiento es contrario a la intuición, ya que el concepto clásico de especie sigue estando muy arraigado, con la especie vista como una clase de organismos que se ejemplifica en un «espécimen tipo», el cual posee todas las características comunes a dicha especie. En su lugar, una especie se define ahora como un linaje que comparte un único acervo genético y evoluciona independiente. Esta definición tiene límites difusos, a pesar de que se utilizan propiedades tanto genéticas como morfológicas para ayudar a diferenciar los linajes estrechamente relacionados. De hecho, la definición exacta del término «especie» está todavía en discusión, particularmente para organismos basados en células procariotas; es lo que se denomina «problema de las especies». Diversos autores han propuesto una serie de definiciones basadas en criterios diferentes, pero la aplicación de una u otra es finalmente una cuestión práctica, dependiendo en cada caso concreto de las particularidades del grupo de organismos en estudio Actualmente, la unidad de análisis principal en biología es la población, un conjunto observable de individuos que interactúan, en lugar de la especie, un conjunto observable de individuos que se parecen entre sí. Esquema que ilustra los aspectos espaciales de diferentes modos de especiación. Especiación alopátrica: una barrera física divide a la población. Especiación peripátrica: una pequeña población fundadora conquista un nicho aislado. Especiación parapátrica: se conquista un nuevo nicho adyacente a la población original. Especiación simpátrica: la especiación ocurre sin que existan separaciones físicas. La especiación ha sido observada en múltiples ocasiones tanto en condiciones de laboratorio controladas como en la naturaleza. En los organismos que se reproducen sexualmente, la especiación es el resultado de un aislamiento reproductivo seguido de una divergencia genealógica. Hay cuatro modalidades de especiación. La más habitual en los animales es la especiación alopátrica, que tiene lugar en poblaciones que inicialmente están geográficamente aisladas, como en el caso de la fragmentación de hábitat o las migraciones. En estas condiciones, la selección puede causar cambios muy rápidos en la apariencia y el comportamiento de los organismos. Como la selección y la deriva actúan de manera independiente en poblaciones aisladas del resto de su especie, la separación puede crear finalmente organismos que no se pueden reproducir entre ellos. La segunda modalidad de especiación es la especiación peripátrica, que tiene lugar cuando poblaciones pequeñas de organismos quedan aisladas en un nuevo medio. Se diferencia de la especiación alopátrica en que las poblaciones aisladas son numéricamente mucho más pequeñas que la población madre. Aquí, el efecto fundador causa una especiación rápida por medio de una rápida deriva genética y selección en un acervo génico pequeño. La tercera modalidad de especiación es la especiación parapátrica. Se parece a la especiación peripátrica en que una pequeña población coloniza un nuevo hábitat, pero se diferencia en que no hay ninguna separación física entre las dos poblaciones. En cambio, la especiación es el resultado de la evolución de mecanismos que reducen el flujo génico entre ambas poblaciones. Generalmente, esto ocurre cuando ha habido un cambio drástico en el medio dentro del hábitat de la especie madre. Un ejemplo es la hierba Anthoxanthum odoratum, que puede sufrir una especiación parapátrica en respuesta a contaminación metálica localizada proveniente de minas. En este caso, evolucionan plantas con una resistencia a niveles altos de metales en el suelo. La selección que desfavorece los cruces con la especie madre, sensible a los metales, produce un cambio en la época de floración de las plantas resistentes a los metales, causando el aislamiento reproductivo. La selección en contra de híbridos entre dos poblaciones puede causar refuerzo, como es la diferenciación de aquellos rasgos que promueven la reproducción dentro de la especie, así como el desplazamiento de caracteres, que es cuando dos especies se vuelven más diferentes en apariencia en el área geográfica en que se solapan. Finalmente, en la especiación simpátrica, las especies divergen sin que haya aislamiento geográfico o cambios en el hábitat. Esta modalidad es rara, pues incluso una pequeña cantidad de flujo génico puede eliminar las diferencias genéticas entre partes de una población. En general, en los animales, la especiación simpátrica requiere la evolución de diferencias genéticas y un apareamiento no aleatorio, para que se pueda desarrollar un aislamiento reproductivo. Un tipo de especiación simpátrica es el cruce de dos especies relacionadas para producir una nueva especie híbrida. Esto no es habitual en los animales, pues los híbridos animales suelen ser estériles, ya que durante la meiosis los cromosomas homólogos de cada padre, siendo de especies diferentes, no pueden aparearse con éxito. Es más habitual en las plantas, pues las plantas duplican a menudo su número de cromosomas, para formar poliploides. Esto permite a los cromosomas de cada especie parental formar una pareja complementaria durante la meiosis, ya que los cromosomas de cada padre ya son representados por una pareja. Un ejemplo de este tipo de especiación es cuando las especies vegetales Arabidopsis thaliana y Arabidopsis arenosa se cruzaron para producir la nueva especie Arabidopsis suecica. Esto tuvo lugar hace aproximadamente 20 000 años, y el proceso de especiación ha sido repetido en el laboratorio, lo que permite estudiar los mecanismos genéticos implicados en este proceso. De hecho, la duplicación de cromosomas dentro de una especie puede ser una causa habitual de aislamiento reproductivo, pues la mitad de los cromosomas duplicados quedarán sin pareja cuando se aparean con los de organismos no duplicados. Los episodios de especiación son importantes en la teoría del equilibrio puntuado, que contempla patrones en el registro fósil de rápidos momentos de especiación intercalados con periodos relativamente largos de estasis, durante los que las especies permanecen prácticamente sin modificar. En esta la teoría, la especiación y la evolución rápida están relacionadas, y la selección natural y la deriva genética actúan de forma particularmente intensa sobre los organismos que sufren una especiación en hábitats nuevos o pequeñas poblaciones. Como resultado de ello, los períodos de estasis del registro fósil corresponden a la población madre, y los organismos que sufren especiación y evolución rápida se encuentran en poblaciones pequeñas o hábitats geográficamente restringidos, por lo que raramente quedan preservados en forma de fósiles. Extinción La extinción es la desaparición de una especie entera. La extinción no es un acontecimiento inusual, pues aparecen a menudo especies por especiación, y desaparecen por extinción.[244] De hecho, la práctica totalidad de especies animales y vegetales que han vivido en la Tierra están actualmente extinguidas,[245] y parece que la extinción es el destino final de todas las especies.[246] Estas extinciones han tenido lugar continuamente durante la historia de la vida, aunque el ritmo de extinción aumenta drásticamente en los ocasionales eventos de extinción.[247] La extinción del Cretácico-Terciario, durante la cual se extinguieron los dinosaurios, es la más conocida, pero la anterior extinción Permo-Triásica fue aún más severa, causando la extinción de casi el 96% de las especies.[247] La extinción del Holoceno es una extinción en masa que todavía dura y que está asociada con la expansión de la humanidad por el globo terrestre en los últimos milenios. El ritmo de extinción actual es de 100 a 1000 veces mayor que el ritmo medio, y hasta un 30% de las especies pueden estar extintas a mediados del siglo XXI.[248] Las actividades humanas son actualmente la causa principal de esta extinción que aún continúa;[249] es posible que el calentamiento global acelere aún más en el futuro.[250] Microevolución y macroevolución Microevolución es un término usado para referirse a cambios de las frecuencias génicas en pequeña escala, en una población durante el transcurso de varias generaciones. Estos cambios pueden deberse a un cierto número de procesos: mutación, flujo génico, deriva génica, así como también por selección natural. La genética de poblaciones es la rama de la biología que provee la estructura matemática para el estudio de los procesos de la microevolución, como el color de la piel en la población mundial. Los cambios a mayor escala, desde la especiación (aparición de una nueva especie) hasta las grandes transformaciones evolutivas ocurridas en largos períodos, son comúnmente denominados macroevolución (por ejemplo, los anfibios que evolucionaron a partir de un grupo de peces óseos). Los biólogos no acostumbran hacer una separación absoluta entre macroevolución y microevolución, pues consideran que macroevolución es simplemente microevolución acumulada y sometida a un rango mayor de circunstancias ambientales. Una minoría de teóricos, sin embargo, considera que los mecanismos de la teoría sintética para la microevolución no bastan para hacer esa extrapolación y que se necesitan otros mecanismos. La teoría de los equilibrios puntuados, propuesta por Gould y Eldredge, intenta explicar ciertas tendencias macroevolutivas que se observan en el registro fósil. Síntesis moderna En las últimas décadas se ha hecho evidente que los patrones y los mecanismos evolutivos son mucho más variados que los que fueran postulados por los pioneros de la Biología evolutiva (Darwin, Wallace o Weismann) y los arquitectos de la teoría sintética (Dobzhansky, Mayr y Huxley, entre otros). Los nuevos conceptos e información en la biología molecular del desarrollo, la sistemática, la geología y el registro fósil de todos los grupos de organismos necesitan ser integrados en lo que se ha denominado «síntesis evolutiva ampliada». Los campos de estudio mencionados muestran que los fenómenos evolutivos no pueden ser comprendidos solamente a través de la extrapolación de los procesos observados a nivel de las poblaciones y especies modernas. Paleobiología y tasas de evolución En el momento en que Darwin propuso su teoría de evolución, caracterizada por modificaciones pequeñas y sucesivas, el registro fósil disponible era todavía muy fragmentario. Más aún, los fósiles previos al período Cámbrico eran totalmente desconocidos. El dilema de Darwin, o sea, la inexistencia aparente de registros fósiles del Precámbrico, fue utilizado como el principal argumento en contra de su propuesta de que todos los organismos de la Tierra provienen de un antepasado común.

Además de la inexistencia de un registro fósil completo, Darwin también estaba preocupado por la ausencia aparente de formas intermedias o enlaces conectores en el registro fósil, lo cual desafiaba su visión gradualística de la especiación y de la evolución. De hecho en tiempos de Darwin, con la excepción de Archaeopteryx, que muestra una mezcla de características de ave y de reptil, virtualmente no se conocían otros ejemplos de formas intermedias o eslabones perdidos, como se los denominó coloquialmente. 

Para 1944, cuando se publicó el libro de Simpson Tempo and mode in evolution, ambos inconvenientes no pudieron subsanarse debido a que para esa época tampoco se conocían fósiles del Precámbrico y solo se disponía de unos pocos ejemplos de formas intermedias en el registro fósil que enlazaran las formas antiguas con las derivadas. Ninguno de los dos dilemas o preocupaciones de Darwin existen actualmente. Los científicos han explorado el período Precámbrico con detalle y se sabe que la vida es mucho más antigua de lo que se creía en los tiempos de Darwin. También se sabe que esas antiguas formas de vida fueron los ancestros de todos los organismos subsecuentes en el planeta. Asimismo, en los últimos 20 años se han descubierto, descrito y analizado una gran cantidad de ejemplos representativos de formas fósiles intermedias que enlazan a los principales grupos de vertebrados e, incluso, fósiles de las primeras plantas con flor.[33][34] Como resultado de estos y otros avances científicos la paleontología (originalmente una rama de la geología) se ha desarrollado en una nueva disciplina denominada actualmente paleobiología. Un ejemplo de forma transicional entre los peces y los anfibios es el género fósil Panderichthys, que habitó la tierra hace unos 370 millones de años y es el enlace intermedio en la serie Eustenopteron (peces, 380 millones de años)-Panderichthys-Acanthostega (anfibios, 363 millones de años). Los anfibios y los vertebrados terrestres presentaron una forma intermedia, Pederpes, de 350 millones de años que enlaza a los principales anfibios acuáticos del Devónico superior con los tetrápodos tempranos. Asimismo, la historia evolutiva de varios grupos de organismos extintos, tales como los dinosaurios, ha sido reconstruida con notable detalle. El enlace entre los reptiles y los mamíferos es el Thrinaxodon, un reptil con características de mamífero que habitó el planeta hace 230 millones de años. El enlace entre los dinosaurios y las aves es el Microraptor, un dromeosáurido con cuatro alas que podía planear y que vivió hace 126 millones de años, el cual representa el estado intermedio entre los terópodos y las primitivas aves voladoras como Archaeopteryx. La forma transicional entre los mamíferos terrestres y la vaca marina es Pezoriren, un sirénido cuadrúpedo primitivo con adaptaciones terrestres y acuáticas que vivió hace 50 millones de años. Los mamíferos terrestres con pezuñas y las ballenas se hallan conectados a través de los géneros extintos Ambulocetus y Rodhocetus que habitaron el planeta hace 48 a 47 millones de años. Para finalizar esta enumeración de ejemplos de formas transicionales, el ancestro de los chimpancés y de los seres humanos es el género Sahelanthropus, un homínido con aspecto de mono que exhibía un mosaico de caracteres de chimpancé y de homínido y que habitó África hace 7 a 5 millones de años. En su libro Variation and Evolution in Plants (1950), Stebbins también se lamentaba por la ausencia de un registro fósil que permitiera comprender el origen de las primeras plantas con flores, las angiospermas. De hecho, el propio Darwin caracterizó al origen de las angiospermas como un «abominable misterio». No obstante, este vacío de conocimiento está siendo rápidamente completado con los descubrimientos realizados desde fines del siglo XX y hasta la actualidad. En 1998 se descubrió en China, en los estratos provenientes del Jurásico Superior (de más de 125 millones de años de antigüedad), un fósil de un eje con frutos, que se ha denominado Archaefructus Semejante descubrimiento, que parecía datar la edad de las angiospermas más antiguas, hizo mundialmente famosa a la Formación Yixian, donde fue descubierto este fósil. Algunos años más tarde, el fósil de otra angiosperma, Sinocarpus, fue también descubierto en esta misma formación. En 2007 se informó del hallazgo de una flor perfecta en la formación Yixian. Esta flor tiene la organización típica de las angiospermas, incluyendo la presencia de tépalos, estambres y gineceo. Esta especie ha sido bautizada como Euanthus (del griego, «flor verdadera») por sus descubridores, e indica que en el Cretácico inferior ya existían flores como las de las angiospermas actuales. Causas ambientales de las extinciones masivas

Las extinciones masivas han desempeñado un papel fundamental en el proceso evolutivo. Darwin no solo discutió el origen sino también la disminución y la desaparición de las especies. Como una causa importante de la extinción de poblaciones y especies propuso a la competencia interespecífica debida a recursos limitados: durante el tiempo evolutivo, las especies superiores surgirían para reemplazar a especies menos adaptadas. Esta perspectiva ha cambiado en los últimos años con una mayor comprensión de las causas de las extinciones masivas, episodios de la historia de la Tierra, donde las «reglas» de la selección natural y de la adaptación parecen haber sido abandonadas. Esta nueva perspectiva fue presagiada por Mayr en su libro Animal species and evolution en el que señaló que la extinción debe ser considerada como uno de los fenómenos evolutivos más conspicuos. Mayr discutió las causas de los eventos de extinción y propuso que nuevas enfermedades (o nuevos invasores de un ecosistema) o los cambios en el ambiente biótico pueden ser los responsables. Además, escribió: «Las causas reales de la extinción de cualquier especie de fósil presumiblemente siempre seguirán siendo inciertas ... Es cierto, sin embargo, que cualquier evento grave de extinción está siempre correlacionado con un trastorno ambiental importante» (Mayr, 1963). Esta hipótesis, no sustentada por hechos cuando fue propuesta, ha adquirido desde entonces un considerable apoyo. El término «extinción masiva», mencionado por Mayr pero sin una definición asociada, se utiliza cuando una gran cantidad de especies se extinguen en un plazo geológicamente breve; los eventos pueden estar relacionados con una causa única o con una combinación de causas, y las especies extintas son plantas y animales de todo tamaño, tanto marinos como terrestres. Al menos han ocurrido cinco extinciones masivas, y han dejado muchos huecos ecológicos que han permitido que fueran ocupados por los descendientes de las especies supervivientes: la extinción masiva del Cámbrico-Ordovícico, las extinciones masivas del Ordovícico-Silúrico, la extinción masiva del Devónico, la extinción masiva del Pérmico-Triásico y la extinción masiva del Cretácico-Terciario. La extinción biológica que se produjo en el Pérmico-Triásico hace unos 250 millones de años representa el más grave evento de extinción en los últimos 550 millones de años. Se estima que en este evento se extinguieron alrededor del 70% de las familias de vertebrados terrestres, muchas gimnospermas leñosas y más del 90% de las especies oceánicas. Se han propuesto varias causas para explicar este evento, las que incluyen el vulcanismo, el impacto de un asteroide o un cometa, la anoxia oceánica y el cambio ambiental. No obstante, es aparente en la actualidad que las gigantescas erupciones volcánicas, que tuvieron lugar durante un intervalo de tiempo de sólo unos pocos cientos de miles de años, fueron la causa principal de la catástrofe de la biosfera durante el Pérmico tardío. El límite Cretácico-Terciario registra el segundo mayor evento de extinción masivo. Esta catástrofe mundial acabó con el 70% de todas las especies, entre las cuales los dinosaurios son el ejemplo más popularmente conocido. Los pequeños mamíferos sobrevivieron para heredar los nichos ecológicos vacantes, lo que permitió el ascenso y la radiación adaptativa de los linajes que en última instancia se convertirían en Homo sapiens. Los paleontólogos han propuesto numerosas hipótesis para explicar este evento, las más aceptadas en la actualidad son las del impacto de un asteroide y la de fenómenos de vulcanismo. En resumen, la hipótesis de los trastornos ambientales como causas de las extinciones masivas ha sido confirmada, lo cual indica que si bien gran parte de historia de la evolución puede ser gradual, de vez en cuando ciertos acontecimientos catastróficos han marcado su ritmo de fondo. Es evidente que los pocos «afortunados sobrevivientes» determinan los subsecuentes patrones de evolución en la historia de la vida. Selección sexual y altruismo


Pavo real macho con todo su plumaje desplegado. Determinadas características en una especie son sexualmente atractivas aunque carezcan de otro significado adaptativo. Por ejemplo, en algunas especies de aves los machos pueden hinchar sus cuellos en una medida extraordinaria lo cual resulta atractivo para las hembras, por lo que —en el transcurso de las generaciones— se seleccionan machos que pueden hinchar exageradamente sus cuellos. Darwin concluyó que si bien la selección natural guía el curso de la evolución, la selección sexual influye su curso aunque no parezca existir ninguna razón evidente para ello. Los argumentos de Darwin a favor de la selección sexual aparecen en el capítulo cuarto de El origen de las especies y, muy especialmente, en The Descent of Man, and Selection in Relation to Sex de 1871. En ambos casos, se esgrime la analogía con el mundo artificial: [La selección sexual] no depende de una lucha por la existencia sino de una lucha entre los machos por la posesión de las hembras; el resultado no es la muerte del competidor que no ha tenido éxito, sino el tener poca o ninguna descendencia. La selección sexual es, por lo tanto, menos rigurosa que la selección natural. Generalmente, los machos más vigorosos, aquellos que están mejor adaptados a los lugares que ocupan en la naturaleza, dejarán mayor progenie. Pero en muchos casos la victoria no dependerá del vigor sino de las armas especiales exclusivas del sexo masculino[...] Entre las aves, la pugna es habitualmente de carácter más pacífico. Todos los que se han ocupado del asunto creen que existe una profunda rivalidad entre los machos de muchas especies para atraer por medio del canto a las hembras. El tordo rupestre de Guayana, las aves del paraíso y algunas otras se congregan, y los machos, sucesivamente, despliegan sus magníficos plumajes y realizan extraños movimientos ante las hembras que, colocadas como espectadoras, eligen finalmente el compañero más atractivo Darwin 1859:136-137) En su libro The Descent of Man describió numerosos ejemplos, tales como la cola del pavo real y de la melena del león. Darwin argumentó que la competencia entre los machos es el resultado de la selección de los rasgos que incrementan el éxito del apareamiento de los machos competidores, rasgos que podrían, sin embargo, disminuir las posibilidades de supervivencia del individuo. De hecho, los colores brillantes hacen a los animales más visibles a los depredadores, el plumaje largo de los machos de pavo real y de las aves del paraíso, o la enorme cornamenta de los ciervos son cargas incómodas en el mejor de casos. Darwin sabía que no era esperable que la selección natural favoreciera la evolución de tales rasgos claramente desventajosos, y propuso que los mismos surgieron por selección sexual, la cual depende no de una lucha por la existencia en relación con otros seres orgánicos o condiciones externas, sino de una lucha entre los individuos de un sexo, generalmente los machos, por la posesión del otro sexo. Darwin, 1871. Para Darwin, la selección sexual incluía fundamentalmente dos fenómenos: la preferencia de las hembras por ciertos machos —selección intersexual, femenina, o epigámica— y, en las especies polígamas, las batallas de los machos por el harén más grande —selección intrasexual—. En este último caso, el tamaño corporal grande y la musculatura proporcionan ventajas en el combate, mientras que en el primero, son otros rasgos masculinos, como el plumaje colorido y el complejo comportamiento de cortejo los que se seleccionan a favor para aumentar la atención de las hembras. Las ideas de Darwin en este sentido no fueron ampliamente aceptadas y los defensores de la teoría sintética (Dobzhansky, Mayr y Huxley) en gran medida ignoraron el concepto de selección sexual. El estudio de la selección sexual sólo cobró impulso en la era postsíntesis. Se ha argumentado que Wallace (y no Darwin) propuso por primera vez que los machos con plumaje brillante demostraban de ese modo su buena salud y su alta calidad como parejas sexuales. De acuerdo con esta hipótesis de la «selección sexual de los buenos genes» la elección de pareja masculina por parte de las hembras ofrece una ventaja evolutiva. Esta perspectiva ha recibido apoyo empírico en las últimas décadas. Por ejemplo, se ha hallado una asociación, aunque pequeña, entre la supervivencia de la descendencia y los caracteres sexuales secundarios masculinos en un gran número de taxones, tales como aves, anfibios, peces e insectos). Además, las investigaciones con mirlos han proporcionado la primera evidencia empírica de que existe una correlación entre un carácter sexual secundario y un rasgo que incrementa la supervivencia ya que los machos con los más brillantes colores presentan un sistema inmune más fuerte. Así, la selección femenina podría promover la salud general de las poblaciones en esta especie. Estos y otros datos son coherentes con el concepto de que la elección de la hembra influye en los rasgos de los machos e, incluso, que puede ser beneficiosa para la especie en formas que no tienen ninguna relación directa con el éxito del apareamiento. En el mismo contexto y desde la publicación del Origen de las especies, se ha argumentado que el comportamiento altruista, los actos abnegados realizados en beneficio de los demás, es incompatible con el principio de la selección natural. Sin embargo, el comportamiento altruista, como el cuidado de las crías por los padres y el mutualismo, se ha observado y documentado en todo el reino animal, desde los invertebrados hasta en los mamíferos. Una de las formas más notorias de altruismo se produce en ciertos insectos eusociales, como las hormigas, abejas y avispas, que tienen una clase de trabajadoras estériles. La cuestión general de la evolución del altruismo, de la sociabilidad de ciertos insectos o de la existencia de abejas u hormigas obreras que no dejan descendientes ha sido contestada por la teoría de la aptitud inclusiva, también llamada teoría de selección familiar. De acuerdo con el principio de Darwin/Wallace la selección natural actúa sobre las diferencias en el éxito reproductivo (ER) de cada individuo, donde ER es el número de descendientes vivos producidos por ese individuo durante toda la vida. Hamilton (1972) amplió esta idea e incluyó los efectos de ER de los familiares del individuo: la aptitud inclusiva es el ER de cada individuo, más el ER de sus familiares, cada uno devaluado por el correspondiente grado de parentesco. Numerosos estudios en una gran variedad de especies animales han demostrado que el altruismo no está en conflicto con la teoría evolutiva. Por esta razón, es necesario realizar una modificación y ampliación de la visión tradicional de que la selección opera sobre un solo organismo aislado en una población: el individuo aislado ya no parece tener una importancia central desde el punto de vista evolutivo, sino como parte de una compleja red familiar. Macroevolución, monstruos prometedores y equilibrio puntuado Cuando se define macroevolución como el proceso responsable del surgimiento de los taxones de rango superior, se está utilizando un lenguaje metafórico. De hecho, sólo nuevas especies «surgen», ya que la especie es el único taxón que posee estatus ontológico. La macroevolución da cuenta de la emergencia de discontinuidades morfológicas importantes entre las especies, razón por la cual se las clasifica como grupos marcadamente diferenciados, es decir, pertenecientes a unidades taxonómicas distintas y de alto rango. En los mecanismos que explican el surgimiento de estas discontinuidades que las diferentes concepciones y aproximaciones disciplinarias se contraponen. Diferencias conceptuales entre el gradualismo y el equilibrio puntuado con relación a la divergencia morfológica a través del tiempo. El gradualismo es el modelo macroevolucionista ortodoxo. Explica la macroevolución como el producto de un cambio lento, de la acumulación de muchos pequeños cambios en el transcurso del tiempo. Este cambio gradual debería reflejarse en el registro fósil con la aparición de numerosas formas de transición entre los grupos de organismos. Sin embargo, el registro no es abundante en formas intermedias. Los gradualistas atribuyen esta discrepancia entre su modelo y las pruebas halladas a la imperfección del propio registro geológico (según expresiones de Darwin, el registro geológico es una narración de la que se han perdido algunos volúmenes y muchas páginas). El modelo del equilibrio puntuado —propuesto en 1972 por N. Eldredge y S. J. Gould— sostiene en cambio que el registro fósil es un fiel reflejo de lo que en realidad ocurrió. Las especies aparecen repentinamente en los estratos geológicos, se las encuentra en ellos por 5 a 10 millones de años sin grandes cambios morfológicos y luego desaparecen abruptamente del registro, sustituidas por otra especie emparentada, pero distinta. Eldredge y Gould utilizan los términos estasis e interrupción, respectivamente, para designar estos períodos. Según su modelo, las interrupciones abruptas en el registro fósil de una especie reflejarían el momento en que ésta fue reemplazada por una pequeña población periférica —en la cual el ritmo de evolución habría sido más rápido— que compitió con la especie originaria y terminó por sustituirla. De acuerdo con este patrón, la selección natural no sólo opera dentro de la población, sino también entre especies, y los cambios cualitativamente importantes en los organismos ocurrirían en períodos relativamente breves —desde el punto de vista geológico— separados por largos períodos de equilibrio. En biología evolutiva, un monstruo prometedor es un organismo con un fenotipo profundamente mutante que tiene el potencial para establecer un nuevo linaje evolutivo. El término se utiliza para describir un evento de especiación saltacional, el cual puede contribuir a la producción de nuevos grupos de organismos. La frase fue acuñada por el genetista alemán Richard Goldschmidt quien pensaba que los cambios pequeños y graduales, que explican satisfactoriamente los cambios microevolutivos, no pueden explicar la macroevolución. La relevancia evolutiva de los monstruos prometedores ha sido rechazada o puesta en duda por muchos científicos que defienden la Teoría sintética de evolución biológica. En su obra The material basis of evolution (La base material de la evolución), Goldschmidt escribió que «el cambio desde una especie a otra no es un cambio que no involucra más y más cambios atomísticos, sino una modificación completa del patrón principal o del sistema de reacción principal en uno nuevo, el que, más tarde puede nuevamente producir variación intraespecífica por medio de micromutaciones.» Varias líneas de evidencia sugieren que los monstruos prometedores juegan un papel significativo durante el origen de innovaciones clave y de planes corporales noveles por evolución saltacional, más que por evolución gradual. Stephen Jay Gould expuso en 1977 que los genes o secuencias reguladoras ofrecían cierto apoyo a los postulados de Goldschmidt. De hecho, arguyó que los ejemplos de evolución rápida no minan el darwinismo —como Goldscmidt suponía— pero tampoco merecen un descrédito inmediato, como muchos neodarwinistas pensaban. Gould insistió que la creencia de Charles Darwin en el gradualismo no fue jamás un componente esencial de su teoría de evolución por selección natural. Thomas Henry Huxley también advirtió a Darwin que había sobrecargado su trabajo con una innecesaria dificultad al adoptar sin reservas el principio Natura non facit saltum. Huxley temía que ese supuesto podría desalentar a aquellos naturalistas que creían que los cataclismos y los grandes saltos evolutivos jugaban un papel significativo en la historia de la vida. En este sentido, Gould escribió: Como un darwinista, deseo defender el postulado de Goldschmidt de que la macroevolución no es simplemente la microevolución extrapolada y que las grandes transiciones estructurales pueden ocurrir rápidamente sin una serie de suaves estados intermedios... En su libro de 1940, Goldschmidt específicamente invoca los genes para el desarrollo como potenciales hacedores de monstruos prometedores. La síntesis de la biología del desarrollo y la teoría de la evolución Desde hace mucho tiempo los historiadores de la ciencia han señalado que una de las principales disciplinas biológicas, la biología del desarrollo (antes llamada embriología), no formó parte de la síntesis evolutiva, aunque esta rama de la biología fue discutida en detalle por Darwin. Ernst Mayr en su ensayo What was the evolutionary synthesis? («Qué fue la síntesis evolutiva?») describió que varios de los embriólogos del período en que se estaba construyendo la síntesis moderna tenían una postura contraria a la teoría evolutiva y señaló que: «Los representantes de algunas disciplinas biológicas, por ejemplo, de la biología del desarrollo, ofrecieron una fuerte resistencia a la síntesis. No fueron dejados afuera de la síntesis, como algunos de ellos ahora reclaman, simplemente no querían unirse». En las dos últimas décadas, sin embargo, esa falta se participación de la embriología dentro de la teoría sintética ha sido subsanada. De hecho, la biología del desarrollo y la biología evolutiva se han unido para formar una nueva rama de la investigación biológica llamada Biología evolutiva del desarrollo o, coloquialmente, «Evo-devo», que explora el modo en que han evolucionado los procesos del desarrollo y cómo, en última instancia, se han logrado los planes de desarrollo de las diversas partes del cuerpo de los organismos del pasado y de los organismos actuales. El factor más importante responsable de la síntesis de la biología del desarrollo con la teoría de la evolución fue el descubrimiento de un grupo de genes reguladores llamado familia de genes homeóticos (genes HOX). Estos genes codifican proteínas de unión al ADN (factores de transcripción) que influyen profundamente en el desarrollo embrionario.[300] Por ejemplo, la supresión de las extremidades abdominales de los insectos está determinada por los cambios funcionales en una proteína llamada Ultrabithorax, que es codificada por un gen Hox. Es importante destacar que la familia de genes Hox ha sido identificada en los artrópodos (insectos, crustáceos, quelicerados, miriápodos), cordados (peces, anfibios, reptiles, aves, mamíferos), y hay análogos entre las especies de plantas y hongos.[300] Los genes HOX desempeñan un papel muy importante en la morfogénesis de los embriones de los vertebrados, ya que proveen información regional a lo largo del eje anteroposterior del cuerpo. Esta familia de genes es homóloga tanto funcional como estructuralmente al complejo homeótico (HOM-C) de Drosophila melanogaster. Sobre la base de la comparación de genes de varios taxones, se ha logrado reconstruir la evolución de los grupos de genes HOX en vertebrados. Los 39 genes que comprenden la familia de genes HOX en humanos y ratones, por ejemplo, están organizados en cuatro complejos genómicos localizados en diferentes cromosomas, HOXA en el brazo corto del cromosoma 7, HOXB en el 17, HOXC en el 12 y HOXD en el 2, y cada uno de ellos comprende de 9 a 11 genes acomodados en una secuencia homóloga a la que tienen en el genoma de D. melanogaster. Aunque el ancestro común del ratón y del humano vivió hace alrededor de 75 millones de años, la distribución y arquitectura de sus genes HOX son idénticas. Por lo tanto, la familia de genes HOX es muy antigua y aparentemente muy conservada, lo que tiene profundas implicaciones para la evolución de los patrones y procesos de desarrollo. Transferencia horizontal de genes La microbiología fue prácticamente ignorada por las primeras teorías evolucionistas. Esto se debía a la escasez de rasgos morfológicos y la falta de un concepto de especie particularmente entre los procariotas. Ahora, los investigadores evolucionistas están aprovechando su mayor comprensión de la fisiología y ecología, ofrecida por la relativa facilidad de la genómica microbiana, para explorar la taxonomía y evolución de estos organismos. Estos estudios están revelando niveles totalmente inesperados de diversidad entre los microbios. Un resultado particularmente importante en los estudios sobre la evolución de los microbios fue el descubrimiento de la transferencia horizontal de genes en 1959 en Japón. Esta transferencia de material genético entre diferentes especies de bacterias ha jugado un papel importante en la propagación de la resistencia a los antibióticos. Más recientemente, a medida que se ha ampliado el conocimiento de los genomas, se ha sugerido que la transferencia horizontal de material genético ha jugado un papel importante en la evolución de todos los organismos. Estos altos niveles de transferencia horizontal de genes han llevado a cuestionar el árbol genealógico de los organismos. En efecto, como parte de la teoría endosimbiótica del origen de los orgánulos, la transferencia horizontal de genes fue un paso crítico en la evolución de eucariotas como los hongos, las plantas y los animales. El origen de las células eucariotas La evolución de las primeras células eucariotas desde la condición antecedente procariotas ha recibido una considerable atención por parte de los científicos. Este acontecimiento clave en la historia de la vida se produjo hace alrededor de 2000 a 1500 millones de años durante el Proterozoico temprano. Dos hipótesis mutuamente no excluyentes se han enunciado para explicar el origen de los eucariotas: la endosimbiosis y la autogénesis. La hipótesis (también llamada teoría) de la endosimbiosis indica que la evolución de las primeras células eucariotas es el resultado de la incorporación permanente de lo que alguna vez fueron células procariotas fisiológicamente diferentes y autónomas, dentro de una célula hospedadora procariota. De acuerdo con este concepto, las mitocondrias han evolucionado de una cierta forma de antigua bacteria aerobia, mientras que los cloroplastos evolucionaron de alguna forma de procariota del tipo de las cianobacterias. La explicación de estos procesos simbiogenéticos seguiría estos pasos: en un principio, un individuo entraría en contacto con una bacteria, al comienzo esa relación podría ser parasitaria, pero con el tiempo ambos individuos podrían llegar a una relación mutualista, el hospedador encontraría ventajas en las características y especialidades del hospedado. De no llegar a este punto la selección natural penalizaría esta relación, disminuyendo paulatinamente el número de estos individuos en el conjunto de la población; por el contrario, una relación fructífera, se vería favorecida por la selección natural y los individuos implicados proliferarían. Finalmente la estrecha relación de ambos se vería plasmada en la herencia genética del individuo resultante; este individuo portaría parte o el conjunto de los dos genomas originales. En contraste, la hipótesis autogénica sostiene que las mitocondrias y los cloroplastos —así como otros orgánulos eucariotas tales como el retículo endoplasmático— se desarrollaron como consecuencia de las presiones de selección para la especialización fisiológica dentro de una antigua célula procariota. Según esta hipótesis, la membrana de la célula hospedadora se habría invaginado para encapsular porciones fisiológicamente diferentes de la célula ancestral. Con el transcurso del tiempo, estas regiones unidas a la membrana se convirtieron en estructuras cada vez más especializadas hasta conformar los diferentes orgánulos que actualmente definen la célula eucariota. No obstante, numerosos hechos, tales como la estructura de la membrana, el tipo de reproducción, la secuencia de ADN y la susceptibilidad a los antibióticos de los cloroplastos y de las mitocondrias tienden a sustentar la hipótesis simbiogenética. Variaciones en la expresión de los genes involucrados en la herencia También existen formas de variación hereditaria que no están basadas en cambios de la información genética; pero sí en el proceso de decodificación de ella. El proceso que produce estas variaciones deja intacta la información genética y es con frecuencia reversible. Este proceso es llamado herencia epigenética que resulta de la trasmisión de secuencias de información no-ADN a través de la meiosis o mitosis; y puede incluir fenómenos como la metilación del ADN o la herencia estructural. Se sigue investigando si estos mecanismos permiten la producción de variaciones específicas beneficiosas en respuesta a señales ambientales. De ser éste el caso, algunas instancias de la evolución podrían ocurrir fuera del cuadro típicamente darwiniano, que evitaría cualquier conexión entre las señales ambientales y la producción de variaciones hereditarias; aunque recordando que indirectamente el origen del proceso en sí mismo estarían involucrados genes, como por ejemplo los genes de la enzima ADN-metiltransferasa, histonas, etc. Impactos de la teoría de la evolución A medida que el darwinismo lograba una amplia aceptación en la década de 1870, se hicieron caricaturas de Charles Darwin con un cuerpo de simio o mono para simbolizar la evolución. En el siglo XIX, especialmente tras la publicación de El origen de las especies, la idea de que la vida había evolucionado fue un tema de intenso debate académico centrado en las implicaciones filosóficas, sociales y religiosas de la evolución. Hoy en día, el hecho de que los organismos evolucionan es indiscutible en la literatura científica, y la síntesis evolutiva moderna tiene una amplia aceptación entre los científicos. Sin embargo, la evolución sigue siendo un concepto controvertido por algunos grupos religiosos. Mientras que muchas religiones y grupos religiosos han reconciliado sus creencias con la evolución por medio de diversos conceptos de evolución teísta, hay muchos creacionistas que creen que la evolución se contradice con el mito de creación de su religión. Como fuera reconocido por el propio Darwin, el aspecto más controvertido de la biología evolutiva son sus implicaciones respecto a los orígenes del hombre. En algunos países —notoriamente en los Estados Unidos— esta tensión entre la ciencia y la religión ha alimentado la controversia creación—evolución, un conflicto religioso que aún dura centrado en la política y la educación pública. Mientras que otros campos de la ciencia como la cosmología, y las ciencias de la Tierra también se contradicen con interpretaciones literales de muchos textos religiosos, la biología evolutiva se encuentra con una oposición significativamente mayor de muchos creyentes religiosos. La evolución ha sido utilizada para apoyar posiciones filosóficas que promueven la discriminación y el racismo. Por ejemplo, las ideas eugenésicas de Francis Galton fueron desarrolladas para argumentar que el patrimonio génico humano debería ser mejorado a través de políticas de mejoramiento genético, incluyendo incentivos para que se reproduzcan aquellos que son considerados con «buenos genes», y la esterilización forzosa, pruebas prenatales, contracepción e, incluso, la eliminación de los considerados con «malos genes». Otro ejemplo de una extensión de la teoría de la evolución que actualmente es considerada infundada es el darwinismo social, un término referido a la teoría malthusiana del partido Whig, desarrollada por Herbert Spencer en frases publicitarias tales como «la supervivencia del más apto» y por otras afirmaciones acerca de que la desigualdad social, el racismo y el imperialismo se encuentran justificados por la teoría evolutiva. Sin embargo, los científicos y filósofos contemporáneos consideran que estas ideas no se hallan implícitas en la teoría evolutiva ni están respaldadas por la información disponible. A medida que se ha ido desarrollando la comprensión de los fenómenos evolutivos, ciertas posturas y creencias bien arraigadas se han visto revisadas, vulneradas o por lo menos cuestionadas. La aparición de la teoría evolutiva marcó un hito, no solo en su campo de pertinencia, al explicar los procesos que originan la diversidad del mundo vivo; sino también más allá del ámbito de las ciencias biológicas. Naturalmente, este concepto biológico choca con las explicaciones tradicionalmente creacionistas y fijistas de algunas posturas religiosas y místicas y —de hecho— aspectos como el de la descendencia de un ancestro común, aún suscitan reacciones en algunas personas. El impacto más importante de la teoría evolutiva se da a nivel de la historia del pensamiento moderno y la relación de este con la sociedad. Este profundo impacto se debe, en definitiva, a la naturaleza no teleológica de los mecanismos evolutivos: la evolución no sigue un fin u objetivo. Las estructuras y especies no «aparecen» por necesidad ni por designio divino sino que a partir de la variedad de formas existentes solo las más adaptadas se conservan en el tiempo. Este mecanismo «ciego», independiente de un plan, de una voluntad divina o de una fuerza sobrenatural ha sido en consecuencia explorado en otras ramas del saber. La adopción de la perspectiva evolutiva para abordar problemas en otros campos se ha mostrado enriquecedora y muy vigente; sin embargo en el proceso también se han dado abusos —atribuir un valor biológico a las diferencias culturales y cognitivas— o deformaciones de la misma —como justificativo de posturas eugenéticas— las cuales han sido usadas como «Argumentum ad consequentiam» a través de la historia de las objeciones a la teoría de la evolución.[330] Evolución y religión Antes de que la geología se convirtiera en una ciencia, a principios del siglo XIX, tanto las religiones occidentales como los científicos descontaban o condenaban de manera dogmática y casi unánime cualquier propuesta que implicara que la vida es el resultado de un proceso evolutivo. Sin embargo, a medida que la evidencia geológica empezó a acumularse en todo el mundo, un grupo de científicos comenzó a cuestionar si una interpretación literal de la creación relatada en la Biblia judeo-cristiana podía reconciliarse con sus descubrimientos (y sus implicaciones). Algunos geólogos religiosos, como Dean William Auckland en Inglaterra, Edward Hitchcock en Estados Unidos y Hugo Millar en Escocia siguieron justificando la evidencia geológica y fósil sólo en términos de un Diluvio universal; pero una vez que Charles Darwin publicara su Origen de las especies en 1859 la opinión científica comenzó a alejarse rápidamente de la interpretación literal de la Biblia. Este debate temprano acerca de la validez literal de la Biblia no se llevó a cabo tras puertas cerradas, y desestabilizó la opinión educativa en ambos continentes. Eventualmente, instigó una contrarreforma que tomó la forma de un renacimiento religioso en ambos continentes entre 1857 y 1860. En los países o regiones en las que la mayoría de la población mantiene fuertes creencias religiosas, el creacionismo posee un atractivo mucho mayor que en los países donde la mayoría de la gente posee creencias seculares. Desde los años 1920 hasta el presente en los Estados Unidos, han ocurrido varios ataques religiosos a la enseñanza de la teoría evolutiva, particularmente por parte de cristianos fundamentalistas evangélicos o pentecostales. A pesar de las abrumadoras evidencias que avalan la teoría de la evolución, algunos grupos interpretan en la Biblia que un ser divino creó directamente a los seres humanos, y a cada una de las otras especies, como especies separadas y acabadas. A partir de 1950 la Iglesia católica romana tomó una posición neutral con respecto a la evolución con la encíclica Humani generis del papa Pío XII. En ella se distingue entre el alma, tal como fue creada por Dios, y el cuerpo físico, cuyo desarrollo puede ser objeto de un estudio empírico: Por otro lado, la encíclica no respalda ni rechaza la creencia general en la evolución debido a que se consideró que la evidencia en aquel momento no era convincente. Permite, sin embargo, la posibilidad de aceptarla en el futuro: No pocos ruegan con insistencia que la fe católica tenga muy en cuenta tales ciencias; y ello ciertamente es digno de alabanza, siempre que se trate de hechos realmente demostrados; pero es necesario andar con mucha cautela cuando más bien se trate sólo de hipótesis, que, aun apoyadas en la ciencia humana, rozan con la doctrina contenida en la Sagrada Escritura o en la tradición.[339] En 1996, Juan Pablo II afirmó que «la teoría de la evolución es más que una hipótesis» y recordó que «El Magisterio de la Iglesia está interesado directamente en la cuestión de la evolución, porque influye en la concepción del hombre». El papa Benedicto XVI ha afirmado que «existen muchas pruebas científicas en favor de la evolución, que se presenta como una realidad que debemos ver y que enriquece nuestro conocimiento de la vida y del ser como tal. Pero la doctrina de la evolución no responde a todos los interrogantes y sobre todo no responde al gran interrogante filosófico: ¿de dónde viene todo esto y cómo todo toma un camino que desemboca finalmente en el hombre?». Independientemente de su aceptación por las principales jerarquías religiosas, las mismas objeciones iniciales a la teoría de Darwin siguen siendo utilizadas en contra de la teoría evolutiva actual. Las ideas de que las especies cambian con el tiempo a través de procesos naturales y que distintas especies comparten sus ancestros parece contradecir el relato del Génesis de la Creación. Los creyentes en la infalibilidad bíblica atacaron al darwinismo como una herejía. La teología natural del siglo XIX se caracterizó por la analogía del relojero de William Paley, un argumento de diseño todavía utilizado por el movimiento creacionista. Cuando la teoría de Darwin se publicó, las ideas de la evolución teísta se presentaron de modo de indicar que la evolución es una causa secundaria abierta a la investigación científica, al tiempo que mantenían la creencia en Dios como causa primera, con un rol no especificado en la orientación de la evolución y en la creación de los seres humanos.

== Fuentes ==
  • Libro de texto noveno grado de Bilogía
  • VV.AA. (1982): Charles R. Darwin: La evolución y el origen del hombre. Revista de Occidente, Extraordinario IV, 18-19: 1-235 ISSN 0034-8635

Evolución humana

Wikimedia Commons alberga contenido multimedia sobre Evolución biológica.