Hielo

Revisión del 11:22 8 jul 2020 de Carlos idict (discusión | contribuciones) (Protegió «Hielo» ([Editar=Sólo moderadores] (indefinido) [Trasladar=Sólo moderadores] (indefinido)))
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)


Hielo
Información sobre la plantilla
Hielo00.jpg
Concepto:Es agua congelada, es decir, en estado sólido, uno de los tres estados naturales del agua.

Hielo . Agua congelada, es decir, en estado sólido, uno de los tres estados naturales del agua. Se reconoce por su temperatura, su color blanco níveo, su flotabilidad y ser muy frío al tacto. El agua pura se congela a 0 °C cuando se halla sometida a una atmósfera de presión. El hielo es el nombre común del agua en estado sólido; otras denominaciones son la nieve, la escarcha, el granizo, etc.

Tipos de hielo

En el hielo, como en la mayoría de los sólidos, las moléculas se acomodan en una formación ordenada. Sin embargo, dependiendo de las condiciones de presión y temperatura, es posible que adopten diferentes formas de ordenarse. A partir de 1900, Gustave Tamman y posteriormente en 1912 Percy Bridgman hicieron experimentos sobre el hielo aplicándole diferentes presiones y temperaturas, y obtuvieron hielos diferentes con mayores densidades a la normal (posteriormente se encontraron muchos más tipos de hielo). Todas estas formas de hielo tienen estructuras más compactas (diferentes formas de un elemento existentes en el mismo estado físico), o sea que se forman varias modificaciones alotrópicas o alótropos.

Los tipos de hielo conocidos son los siguientes:

  • Hielo Ih (Todo el hielo que se forma en la biosfera terrestre es hielo del tipo Ih, a excepción de una pequeña cantidad de hielo Ic. Los cristales de hielo tienen forma hexagonal).
  • Hielo Ic (baja temperatura, cúbica centrada en las caras, densidad aproximadamente 900 kg/m³).
  • Hielo II (baja temperatura, ortorrómbica centrado, densidad aproximadamente 1200 kg/m³).
  • Hielo III o Iii (baja temperatura, tetragonal, densidad aproximadamente 1100 kg/m³).
  • Hielo V (alta presión, baja temperatura, monoclínica de base centrada, densidad aproximadamente 1200 kg/m³).
  • Hielo VI (alta presión, baja temperatura, tetragonal, densidad aproximadamente 1300 kg/m³).
  • Hielo VII (alta temperatura, alta presión, cúbico sencilla, densidad aproximadamente 1700 kg/m³).
  • Hielo VIII (alta presión, tetragonal centrada, densidad aproximadamente 1600 kg/m³).
  • Hielo IX (alta presión, tetragonal, densidad aproximadamente 1200 kg/m³).
  • Hielo XII (alta presión, baja temperatura, tetragonal, densidad aproximadamente 1300 kg/m³).

Estructura

El hielo se presenta en 12 estructuras o fases cristalinas diferentes. A las presiones habituales en el medio terrestre (en el entorno de la presión atmosférica), la fase estable suele denotarse como fase I según la terminología de Tamman. Dicha fase I presenta dos variantes relacionadas entre sí: el hielo hexagonal, denotado Ih, y el hielo cúbico, Ic. El hielo hexagonal es la fase más común, y la mejor conocida: su estructura hexagonal puede verse reflejada en los cristales de hielo, que siempre tienen una base hexagonal. El hielo cúbico Ic se obtiene por deposición de vapor de agua a temperaturas inferiores a –130 °C, por lo que no es tan común; aun así, a unos –38 °C y 200MPa de presión, situación esperable en los casquetes polares, ambas estructuras están en equilibrio termodinámico.

El hielo Ih presenta una estructura hexagonal en la que cada átomo de oxígeno de una molécula de agua tiene otros cuatro átomos de hidrógeno como sus vecinos más próximos, situados en los vértices de un tetraedro regular cuyo centro es el átomo de oxígeno de interés. Esta unidad tetraédrica es común a todas las demás fases del hielo, y se debe al hecho de que el ángulo entre átomos de hidrógeno en la molécula de agua libre H-O-H es de 104,52º, en vez de 90º. El ángulo tetraédrico entre O-O-O es de 109,47º. Para temperaturas de interés terrestre, la distancia entre átomos de oxígeno O-O es de 0,276 nm y entre O-H de 0,0985 nm. La unión entre átomos intramoleculares es de enlaces covalentes simples y por tanto muy estables, mientras que la unión intermolecular se produce por enlaces de puente hidrógeno relativamente débiles, lo cual explica la relativamente baja temperatura de fusión del hielo. Los parámetros de red más relevantes son el lado hexagonal a=0,451 nm, y la altura del prisma hexagonal c=0,7357 nm. Estos valores pueden variar ligeramente con la temperatura, pero la relación entre ambos, c/a=1,628, permanece prácticamente estable y muy cercana al valor óptimo de c/a=1,633, teorizado para esferas sólidas en contacto formando la misma estructura hexagonal. La estabilidad del parámetro c/a explica el hecho de que la expansión térmica del hielo se produzca de manera isotrópica. Por su parte, el hecho de que el hielo Ih tenga una estructura hexagonal explica la anisotropía usualmente observada en sus propiedades mecánicas: el módulo de Young, por ejemplo, que se sitúa en el entorno de E=9-10GPa para cristales puros, presenta isotropía radial, y varía considerablemente según la dirección de la deformación; la resistencia mecánica, situada en el entorno de 1MPa para cristales puros en la dirección basal, puede alcanzar los 7MPa en ciertas configuraciones.

La presencia de impurezas en la red es práula, salvo para algunas sustancias puntuales como el fluoruro de amonio, NH4F. Los defectos cristalinos pueden ser cuatro: vacantes, intersticiales, iónicos o de Bjerrum, los dos últimos siendo exclusivos del hielo y estando relacionados con la rotación de hidrógenos de una molécula de agua en la red.

En todo caso, la estructura Ih del hielo es poco compacta —lo cual explica su menor densidad con respecto a la fase líquida— sobre todo si se compara con estructuras análogas en otros materiales cristalinos como los metales. El factor de empaquetamiento es de 0,34, muy inferior al 0,74 típico de los metales. Ello se explica por la repulsión de átomos de hidrógeno y oxígeno conforme se compacta la red. De hecho, esta repulsión lleva a que, cuando la presión sobre la red hexagonal es lo suficientemente elevada, esta estructura deje de ser estable y aparezcan otras que la sustituyan.

En efecto, el resto de fases cristalinas se producen a presiones mucho más altas, y hasta 1900 eran desconocidas. De hecho, no existen en la Tierra, pues los casquetes polares terrestres son demasiado finos como para permitir la aparición de fases estables distintas al hielo Ih. Sin embargo, la situación es distinta en las grandes lunas heladas del sistema solar como Europa o Tritón, donde se postula que las presiones en el núcleo son lo suficientemente elevadas como para asegurar la aparición de fases estables distintas a la Ih, que a dichas presiones sería inestable. Las fases cristalinas de alta presión mejor conocidas son las fases II y III; en laboratorio sólo se han estudiado las fases II, III, V y VI, mientras que el resto permanecen básicamente desconocidas.

La estructura del hielo II es romboidal. Este hielo se forma a unos 238K para presiones de 283 atmósferas, y su densidad es de 1193 kg/m³ por ser una estructura mucho más compacta. El hielo III es tetragonal, y aparece a unos 246 K y 276 atm, siendo su densidad de 1166 kg/m³. El hielo V es monoclínico, apareciendo a 237,5 K y 480 atm, con una densidad de 1267 kg/m³. El hielo VI es tetragonal, y aparece a 237,5K para 777atm, con una densidad de 1360 kg/m³. Todas estas fases son esencialmente frágiles, aunque presentan gran tendencia a la fluencia en el tiempo (creep) y cierto comportamiento viscoelástico.

Aunque inicialmente se creía que eran fases nanocristalinas, aparte de las fases cristalinas arriba mencionadas, el hielo puede aparecer en dos fases amorfas (vítreas): el hielo amorfo de baja densidad (940 kg/m³ a –196 °C y 1atm) y el hielo amorfo de alta densidad (1170 kg/m³, mismas condiciones). La formación del hielo amorfo es complicada, y se relaciona con el tiempo de solidificación dado al agua; puede formarse por condensación de vapor por debajo de –160 °C, por colapso de la estructura Ih bajo elevada presión por debajo de –196 °C. En todo caso, salvo en ciertas situaciones muy concretas, no son fases comunes en la Tierra.

El hielo como mineral

En mineralogía es aceptado como mineral válido por la Asociación Mineralógica Internacional, pues es un sólido estable a temperaturas de menos de 0 °C. Se clasifica en el grupo 4 de minerales óxidos al ser un óxido de hidrógeno, normalmente con abundantes impurezas.

Color del hielo

En ciertas ocasiones el hielo se ve de color azul.

La luz blanca del Sol está realmente formada por una mezcla de colores, desde el rojo al violeta, como se comprueba cuando se hace pasar un rayo de luz a través de un prisma de vidrio, o en el arco iris. Las ondas de luz más azuladas tienen más energía que las amarillas o las rojas. La nieve es blanca porque toda la luz que le llega es reflejada en una capa muy delgada que se encuentra en su superficie. Las pequeñas burbujas de aire que están atrapadas en el hielo refleja la luz, múltiples veces y todos los colores, desde el rojo al violeta, escapan, de modo que la luz que recibimos es luz blanca.

El hielo aparece azul cuando tiene una consistencia muy alta y las burbujas de aire no impiden el paso de la luz a través de él. Sin el efecto «dispersivo» de las burbujas, la luz puede penetrar en el hielo siendo absorbida paulatinamente en su camino hacia las partes más profundas. Los fotones rojos, que tienen menor energía que los azules, penetran menos distancia y son absorbidos antes. En promedio, la absorción de luz roja en el hielo es seis veces más eficiente que la absorción de luz azul; por tanto, cuanta más distancia viaje un haz de luz blanca pierde en su camino más y más fotones rojos, amarillos, verdes… y son los azules los que «sobreviven». Esta es la razón del color azul del hielo puro, y de un glaciar o de un iceberg.

Dicho de otra manera, el hielo más compacto, como el hielo glaciar, se comporta de una forma especial al recibir la luz. Al incidir un rayo de luz, solo el componente azul de la radiación solar tiene la suficiente energía para penetrar en el interior de la masa de hielo. Por ello, al absorber los otros colores, el hielo glaciar aparece de color azul.

Formación de hielo sin agua

Las fases sólidas de algunas otras sustancias también reciben el nombre de hielo, sobre todo en el contexto astrofísico: el hielo seco es un término comúnmente utilizado para el dióxido de carbono sólido. Un monopolo magnético de hielo también se puede llevar a cabo al aislar los materiales magnéticos en los cuales los momentos magnéticos imitan la posición de los protones en el agua de hielo y se rigen por limitaciones energéticas similares a las reglas de Bernal-Fowler, derivados de la frustración geométrica en la configuración de un protón en el hielo de agua. A estos materiales se les denomina hielos de espín.

Bibliografías

  • BRENESR, ROJASLF. El agua: sus propiedades y su importancia biológica. Acta Académica. 2005.
  • Aguilera Mochón, J.A. (2017) El agua en el cosmos, p. 30.
  • Serway, Raymond A.; Faughn, Jerry S. (2001). Física. Pearson Educación. ISBN 978-970-26-0015-2.
  • UNESCO, 1992. Clasificación de masas de agua en relación con sus pretendidos usos. En: El control de la eutrofización en lagos y pantanos. Ediciones Pirámide, S.A., Madrid. 315-355 pp.
  • J. M. Rodríguez and R. Marín, Fisicoquímica de aguas, 1st ed. Madrid, España: Diaz de Santos, 1999
  • Bach, J. & Brusi, D. (1988) Reflexiones y recursos sobre la didáctica del ciclo del agua, Revista de Geología 2, 223-232
  • Camilloni, I. y C. Vera: El aire y el agua en nuestro planeta, Buenos Aires, EUDEBA, 2006.

Fuentes