Saltar a: navegación, buscar

Ácido nucleico

Ácido nucleico
Información sobre la plantilla
Foto de Ácido nucleico.JPG
Concepto:Los ácidos nucleicos son las biomoléculas portadoras de la información genética. Tienen una estructura polimérica, lineal, cuyos monómeros son los nucleótidos.

Los ácidos nucleicos son las biomoléculas portadoras de la información genética. Tienen una estructura polimérica, lineal, cuyos monómeros son los nucleótidos. El grado de polimerización puede llegar a ser altísimo, con moléculas constituidas por centenares de millones de nucleótidos en una sola estructura covalente. De la misma manera que las proteínas son polímeros lineales aperiódicos de aminoácidos, los ácidos nucleicos lo son de nucleótidos. La aperiodicidad de la secuencia de nucleótidos implica la existencia de información. De hecho, sabemos que los ácidos nucleicos constituyen el depósito de información de todas las secuencias de aminoácidos de todas las proteínas de la célula. Existe una correlación entre ambas secuencias, lo que se expresa diciendo que ácidos nucleicos y proteínas son colineares; la descripción de esta correlación es lo que llamamos Código Genético, establecido de forma que a una secuencia de tres nucleótidos en un ácido nucleico corresponde un aminoácido en una proteína.

Descubrimiento

El descubrimiento de los ácidos nucleicos se debe a Meischer (1869), el cual trabajando con leucocitos y espermatozoides de salmón, obtuvo una sustancia rica en carbono, hidrógeno, oxígeno, nitrógeno y un porcentaje elevado de fósforo. A esta sustancia se le llamó en un principio nucleina, por encontrarse en el núcleo. Años más tarde, se fragmentó esta nucleina, y se separó un componente protíeco y un grupo prostético, este último, por ser ácido, se le llamó ácido nucleico. En los años 30, Kossel comprobó que tenían una estructura bastante compleja. En 1953, James Watson y Francis Crick, descubrieron la estructura tridimensional de uno de estos ácidos, concretamente del ácido desoxirribonucleico (ADN).


Tipo de ácidos nucleicos

Existen dos tipos de ácidos nucleicos:ADN (ácido desoxirribonucleico) y ARN (ácido ribonucleico), que se diferencian:

  • Por el glúcido (pentosa) que contienen: la desoxirribosa en el ADN y la ribosa en el ARN;
  • Por las bases nitrogenadas que contienen: adenina, guanina, citosina y timina, en el ADN; adenina, guanina, citosina y uracilo, en el ARN.
  • En los organismos eucariotas, la estructura del ADN es de doble cadena, mientras que la estructura del ARN es monocatenaria, aunque puede presentarse en forma extendida, como el ARNm, o en forma plegada, como el ARNt y el ARNr
  • En la masa molecular: la del ADN es generalmente mayor que la del ARN.

Composición química y estructura de los ácidos nucleicos

Los ácidos nucleicos resultan de la polimerización de monómeros complejos denominados nucleótidos. Un nucleótido está formado por la unión de un grupo fosfato al carbono 5’ de una pentosa. A su vez la pentosa lleva unida al carbono 1’ una base nitrogenada.

Las bases nitrogenadas son moléculas cíclicas y en la composición de dichos anillos participa, además del carbono, el nitrógeno. Estos compuestos pueden estar formados por uno o dos anillos. Aquellas bases formadas por dos anillos se denominan bases púricas (derivadas de la purina). Dentro de este grupo encontramos: Adenina (A), y Guanina (G).

Si poseen un solo ciclo, se denominan bases pirimidínicas (derivadas de la pirimidina), como por ejemplo la Timina (T), Citosina (C), Uracilo (U).

Estos derivados de la purina y la pirimidina son las bases que se encuentran con mayor frecuencia en los ácidos nucleicos.


Nucleósidos y nucleótidos

Las unidades que forman los ácidos nucleicos son los nucleótidos. Cada nucleótido es una molécula compuesta por la unión de tres unidades: un monosacárido de cinco carbonos (una pentosa, ribosa en el ARN y desoxirribosa en el ADN), una base nitrogenada purínica (adenina, guanina) o pirimidínica (citosina, timina o uracilo) y uno o varios grupos fosfato (ácido fosfórico). Tanto la base nitrogenada como los grupos fosfato están unidos a la pentosa.

La unión formada por la pentosa y la base nitrogenada se denomina nucleósido. Cuando lleva unido una unidad de fosfato al carbono 5' de la ribosa o desoxirribosa y dicho fosfato sirve de enlace entre nucleótidos, uniéndose al carbono 3' del siguiente nucleótido; se denomina nucleótido-monofosfato (como el AMP) cuando hay un solo grupo fosfato, nucleótido-difosfato (como el ADP) si lleva dos y nucleótido-trifosfato (como el ATP) si lleva tres.

Listado de las bases nitrogenadas

Las bases nitrogenadas conocidas son:

  • Adenina, presente en ADN y ARN
  • Guanina, presente en ADN y ARN
  • Citosina, presente en ADN y ARN

Funciones de ácidos nucleicos

Entre las principales funciones de estos ácidos tenemos:

  • Duplicación del ADN
  • Expresión del mensaje genético:
  • Transcripción del ADN para formar ARNm y otros
  • Traducción, en los ribosomas, del mensaje contenido en el  ARNm a proteinas.

Diferencias entre el ADN y el ARN

El ADN y el ARN se diferencian porque:

  • El peso molecular del ADN es generalmente mayor que el del ARN
  • El azúcar del ARN es ribosa, y el del ADN es desoxirribosa
  • El ARN contiene la base nitrogenada uracilo, mientras que el ADN presenta timina

La configuración espacial del ADN es la de un doble helicoide, mientras que el ARN es un polinucleótido lineal, que ocasionalmente puede presentar apareamientos intracatenarios

Ácidos nucleicos artificiales

Existen, aparte de los naturales, algunos ácidos nucleicos no presentes en la naturaleza, sintetizados en el laboratorio.

  • Ácido nucleico peptídico, donde el esqueleto de fosfato-(desoxi)ribosa ha sido sustituido por 2-(N-aminoetil)glicina, unida por un enlace peptídico clásico. Las bases púricas y pirimidínicas se unen al esqueleto por el carbono carbonílico. Al carecer de un esqueleto cargado (el ión fosfato lleva una carga negativa a pH fisiológico en el ADN/ARN), se une con más fuerza a una cadena complementaria de ADN monocatenario, al no existir repulsión electrostática. La fuerza de interacción crece cuando se forma un ANP bicatenario. Este ácido nucleico, al no ser reconocido por algunos enzimas debido a su diferente estructura, resiste la acción de nucleasas y proteasas.
  • Morfolino y ácido nucleico bloqueado (LNA, en inglés). El morfolino es un derivado de un ácido nucleico natural, con la diferencia de que usa un anillo de morfolina en vez del azúcar, conservando el enlace fosfodiéster y la base nitrogenada de los ácidos nucleicos naturales. Se usan con fines de investigación, generalmente en forma de oligómeros de 25 nucleótidos. Se usan para hacer genética inversa, ya que son capaces de unirse complementariamente a pre-ARNm, con lo que se evita su posterior recorte y procesamiento. También tienen un uso farmacéutico, y pueden actuar contra bacterias y virus o para tratar enfermedades genéticas al impedir la traducción de un determinado ARNm.
  • Ácido nucleico glicólico. Es un ácido nucleico artificial donde se sustituye la ribosa por glicerol, conservando la base y el enlace fosfodiéster. No existe en la naturaleza. Puede unirse complementariamente al ADN y al ARN, y sorprendentemente, lo hace de forma más estable. Es la forma químicamente más simple de un ácido nucleico y se especula con que haya sido el precursor ancestral de los actuales ácidos nucleicos.
  • Ácido nucleico treósico. Se diferencia de los ácidos nucleicos naturales en el azúcar del esqueleto, que en este caso es una treosa. Se han sintetizado cadenas híbridas ATN-ADN usando ADN polimerasas. Se une complementariamente al ARN, y podría haber sido su precursor.

Fuentes

  • Biogenomica.com
  • “Biología”, Cuarto Medio, Glavic-Ferrada. Ediciones Pedagógicas Chilenas.
  • Enciclopedia de genes. DatosFreak.org. Consultado el 13-4-2010