Saltar a: navegación, buscar

Código genético

Código Genético
Información sobre la plantilla
Codigo genetico.png
Concepto:El código genético es el conjunto de reglas usadas para traducir la secuencia de nucleótidos del ARNm a una secuencia de proteína en el proceso de traducción.

El código genético es el conjunto de normas por las que la información codificada en el material genético (secuencias de ADN o ARN) se traduce en proteínas (secuencias de aminoácidos) en las células vivas. El código define la relación entre secuencias de tres nucleótidos, llamadas codones, y aminoácidos. Un codón se corresponde con un aminoácido específico.

Estructura

La secuencia del material genético se compone de cuatro bases nitrogenadas distintas, que tienen una función equivalente a letras en el código genético: adenina (A), timina (T), guanina (G) y citosina (C) en el ADN y adenina (A), uracilo (U), guanina (G) y citosina (C) en el ARN. Debido a esto, el número de codones posibles es 64, de los cuales 61 codifican aminoácidos (siendo además uno de ellos el codón de inicio, AUG) y los tres restantes son sitios de parada (UAA, llamado ocre; UAG, llamado ámbar; UGA, llamado ópalo). La secuencia de codones determina la secuencia aminoacídica de una proteína en concreto, que tendrá una estructura y una función específica.

Historia

Durante muchos años el hombre se ha interesado por descubrir los secretos de la herencia.

Mediante largos y difíciles estudios se descubrió la existencia del ADN y ARN y su importancia para la genética; al hablar de los mismos se hace referencia a la síntesis de las proteínas que van a determinar las características genotípicas y fenotípicas del organismo. Se pensó primero en algún tipo de mecanismo similar al de la auto duplicación del ADN, pero no fue posible encontrar una adecuación fisicoquímica satisfactoria. Las relaciones entre el ADN y las proteínas eran aparentemente más complicadas. Si las proteínas con sus 20 aminoácidos, fueran el "lenguaje de la vida" -para utilizar 'la metáfora de los años 40- la molécula del ADN, con sus cuatro bases nitrogenadas, podía imaginarse como un tipo de código para este lenguaje.

Así comenzó a usarse el término "código genético".Como se demostró más adelante, la idea de un "código de la vida" fue útil, no sólo como una buena metáfora, sino también como una hipótesis de trabajo.

El origen del código genético

Esquema representativo del código genético

A pesar de las variaciones que existen, los códigos genéticos utilizados por todas las formas conocidas de vida son muy similares. Esto sugiere que el código genético se estableció muy temprano en la historia de la vida y que tiene un origen común en las formas de vida actuales. Análisis filogenético sugiere que las moléculas ARNt evolucionaron antes que el actual conjunto de aminoacil-ARNt sintetasas.

El código genético no es una asignación aleatoria de los codones a aminoácidos. Por ejemplo, los aminoácidoss que comparten la misma vía biosintética tienden a tener la primera base igual en sus codones y aminoácidos con propiedades físicas similares tienden a tener similares a codones.

Experimentos recientes demuestran que algunos aminoácidos tienen afinidad química selectiva por sus codones. Esto sugiere que el complejo mecanismo actual de traducción del ARNm que implica la acción ARNt y enzimas asociadas, puede ser un desarrollo posterior y que, en un principio, las proteínas se sintetizaran directamente sobre la secuencia de ARN, actuando éste como ribozima y catalizando la formación de enlaces peptídicos (tal como ocurre con el ARNr 23S del ribosoma).

Se ha planteado la hipótesis de que el código genético estándar actual surgiera por expansión biosintética de un código simple anterior. La vida primordial pudo adicionar nuevos aminoácidos (por ejemplo, subproductos del metabolismo), algunos de los cuales se incorporaron más tarde a la maquinaria de codificación genética. Se tienen pruebas, aunque circunstanciales, de que formas de vida primitivas empleaban un menor número de aminoácidos diferentes, aunque no se sabe con exactitud que aminoácidos y en que orden entraron en el código genético.

Otro factor interesante a tener en cuenta es que la selección natural ha favorecido la degeneración del código para minimizar los efectos de las mutaciones y es debido a la interacción de dos átomos distintos en la reacción. Esto ha llevado a pensar que el código genético primitivo podría haber constado de codones de dos nucleótidos, lo que resulta bastante coherente con la hipótesis del balanceo del ARNt durante su acoplamiento.

Características y Desciframiento

Características del código genético.

El código está organizado en tripletes o codones:

  • Cada tres nucleótidos (triplete) determinan un aminoácido.

Si cada nucleótido determinara un aminoácido, solamente podríamos codificar cuatro aminoácidos diferentes ya que en el ADN solamente hay cuatro nucleótidos distintos. Cifra muy inferior a los 20 [[Aminoácido|aminoácidos distintos que existen. Si cada dos nucleótidos codificarán un aminoácido, el número total de dinucleótidos distintos que podríamos conseguir con los cuatro nucleótidos diferentes (A, G, T y C) serían variaciones con repetición de cuatro elementos tomados de dos en dos VR4,2 = 42 = 16. Por tanto, tendríamos solamente 16 dinucleótidos diferentes, cifra inferior al número de aminoácidos distintos que existen (20).

Si cada grupo de tres nucleótidos determina un aminoácido. Teniendo en cuenta que existen cuatro nucleótidos diferentes (A, G, T y C), el número de grupos de tres nucleótidos distintos que se pueden obtener son variaciones con repetición de cuatro elementos (los cuatro nucleótidos) tomados de tres en tres: VR4,3 = 43 = 64. Por consiguiente, existe un total de 64 tripletes diferentes, cifra más que suficiente para codificar los 20 aminoácidos distintos.

El código genético es degenerado

Regiones funcionales de cualquier molécula de ARN transferente
  • Existen más tripletes o codones que aminoácidos, de forma que un determinado aminoácido puede estar codificado por más de un triplete.

Como hemos dicho anteriormente existen 64 tripletes distintos y 20 aminoácidos diferentes, de manera que un aminoácido puede venir codificado por más de un codón. Este tipo de código se denomina: degenerado. Wittmann (1962) induciendo sustituciones de bases por desaminación con nitritos, realizó sustituciones de C por U y de A por G en el ARN del virus del mosaico del tabaco (TMV), demostrando que la serina y la isoleucina estaban determinadas por más de un triplete.

Las moléculas encargadas de transportar los aminoácidos hasta el ribosoma y de reconocer los codones del ARN mensajero durante el proceso de traducción son los ARN transferentes (ARN-t). Los ARN-t tienen una estructura en forma de hoja de trébol con varios sitios funcionales:

  • Extremo 3: lugar de unión al aminoácido (contiene siempre la secuencia ACC).
  • Lazo dihidrouracilo (DHU): lugar de unión a la aminoacil ARN-t sintetasa o enzimas encargadas de unir un aminoácido a su correspondiente ARN-t.
  • Lazo de T ψ C: lugar de enlace al ribosoma.
  • Lazo del anticodón: lugar de reconocimiento de los codones del mensajero.
Secuencia del ARN transferente de elanina de levadura

Normalmente el ARN-t adopta una estructura de hoja de trébol plegada en forma de L o forma de boomerang.

La degeneración del código se explica teniendo en cuenta dos motivos:

  • Algunos aminoácidos pueden ser transportados por distintas especies moleculares (tipos) de ARN transferentes (ARN-t) que contienen distintos anticodones.
  • Algunas especies moleculares de ARN-t pueden incorporar su aminoácido específico en respuesta a varios codones, de manera que poseen un anticodón que es capaz de emparejarse con varios codones diferentes. Este emparejamiento permisivo se denomina Flexibilidad de la 3ª base del anticodón o tambaleo.


El código genético es no solapado o sin superposiciones

  • Un nucleótido solamente pertenece a un único triplete.

Un nucleótido solamente forma parte de un triplete y, por consiguiente, no forma parte de varios tripletes, lo que indica que el código genético no presenta superposiciones. Por tanto, el código es no solapado. Wittmann (1962) induciendo mutaciones con ácido nitroso en el ARN del virus del mosaico del tabaco (TMV) pudo demostrar que las mutaciones habitualmente producían un cambio en un solo aminoácido. El ácido nitroso produce desaminaciones que provocan sustituciones de bases, si el código fuera solapado y un nucleótido formará parte de dos o tres tripletes, la sustitución de un nucleótido daría lugar a dos o tres aminoácidos alterados en la proteína de la cápside del TMV.

Otra forma de comprobar que el código es sin superposición es que no hay ninguna restricción en la secuencia de aminoácidos de las proteínas, de manera, que un determinado aminoácido puede ir precedido o seguido de cualquiera de los 20 aminoácidos que existen. Si dos codones sucesivos compartieran dos nucleótidos, cualquier triplete solamente podría ir precedido o seguido por cuatro codones determinados. Por consiguiente, si el código fuera superpuesto, un aminoácido determinado solamente podría ir precedido o seguido de otros cuatro aminoácidos como mucho.

La lectura es "sin comas"

  • El cuadro de lectura de los tripletes se realiza de forma continua "sin comas" o sin que existan espacios en blanco.

Teniendo en cuenta que la lectura se hace de tres en tres bases, a partir de un punto de inicio la lectura se lleva a cabo sin interrupciones o espacios vacíos, es decir, la lectura es seguida "sin comas". De manera, que si añadimos un nucleótido (adición) a la secuencia, a partir de ese punto se altera el cuadro de lectura y se modifican todos los aminoácidos. Lo mismo sucede si se pierde (deleción) un nucleótido de la secuencia. A partir del nucleótido delecionado se altera el cuadro de lectura y cambian todos los aminoácidos. Si la adición o la deleción es de tres nucleótidos o múltiplo de tres, se añade un aminoácido o más de uno a la secuencia que sigue siendo la misma a partir del la última adición o deleción. Una adición y una deleción sucesivas vuelven a restaurar el cuadro de lectura.

El código genético nuclear es universal

  • El mismo triplete en diferentes especies codifica para el mismo aminoácido. La principal excepción a la universalidad es el código genético mitocondrial.

El desciframiento del código genético se ha realizado fundamentalmente en la bacteria E. coli, por tanto, cabe preguntarse si el código genético de esta bacteria es igual que el de otros organismos tanto procarióticos como eucarióticos. Los experimentos realizados hasta la fecha indican que el código genético nuclear es universal, de manera que un determinado triplete o codón lleva información para el mismo aminoácido en diferentes especies.

Desciframiento del código genético

La asignación de un aminoácido a cada triplete o el desciframiento de la clave genética. Parece lógico pensar que el desciframiento del código genético se debería haber realizado comparando las secuencia de nucleótidos de un gen y la de aminoácidos del polipéptido codificado por dicho gen. Sin embargo, en la época en la que se realizaron estos trabajos no era posible todavía obtener la secuencia de los ácidos nucleicos.

La mayoría de los trabajos realizados por los grupos de investigación consistieron en sintetizar ARN mensajeros (ARN-m) para utilizarlos posteriormente como mensajeros artificiales en un sistema acelular de traducción "in vitro". Estos sistemas acelulares de traducción "in vitro" procedían de la bacteria E. coli y contenían todo lo necesario para llevar a cabo la traducción: ribosomas, todos los ARN transferentes, aminoácidos, enzimas, etc. Sin embargo, a estos sistemas acelulares se les quitaban los ARN mensajeros de E. coli y se les añadía un ARN sintetizado artificialmente. En estos sistemas acelulares se sintetizaba un polipéptido.

Usos incorrectos del término

La expresión "código genético" es frecuentemente utilizada en los medios de comunicación como sinónimo de genoma, de genotipo, o de ADN. Frases como:

  • «Se analizó el código genético de los restos y coincidió con el de la desaparecida»
  • «se creará una base de datos con el código genético de todos los ciudadanos»

Son científicamente incorrectas. Es insensato, por ejemplo, aludir al «código genético de una determinada persona», porque el código genético es el mismo para todos los individuos. Sin embargo, cada organismo tiene un genotipo propio, aunque es posible que lo comparta con otros si se ha originado por algún mecanismo de multiplicación asexual.

Vea También

Fuentes

Enlaces Externos