Carl Friedrich Gauss

De EcuRed
Carl Friedrich Gauss
Información sobre la plantilla

Destacadísimo matemático aleman
NombreJohann Carl Friedrich Gauss
Nacimiento30 de abril de 1777
Brunswick, Bandera de Alemania Alemania
Fallecimiento23 de febrero de 1855
Göttingen, Bandera de Alemania Alemania
NacionalidadAlemana
OcupaciónMatemático

Johann Carl Friedrich Gauss. Matemático, astrónomo y físico alemán que contribuyó significativamente en muchos campos, incluida la Teoría de números, el Análisis matemático, la Geometría diferencial, la geodesia, el magnetismo y la óptica. Considerado "el príncipe de las matemáticas" y "el matemático más grande desde la antigüedad", ha tenido una influencia notable en muchos campos de la matemática y de la ciencia, y es considerado uno de los matemáticos que más influencia ha tenido en la historia. Fue de los primeros en extender el concepto de divisibilidad a otros conjuntos.

Contenido

Síntesis biográfica

Nace el30 de abril de 1777 en la ciudad de Brunswick, Alemania. En el seno de una familia muy pobre, su abuelo era un humilde jardinero de Brunswick. Nunca pudo superar la espantosa miseria que siempre cargo. Fue un niño prodigio de quien existen muchas anécdotas acerca de su asombrosa precocidad siendo apenas un infante, e hizo sus primeros grandes descubrimientos mientras era apenas un adolescente.

De pequeño Gauss fue respetuoso y obediente, y en su edad adulta nunca criticó a su padre por haber sido tan violento y rudo. Poco después de que Gauss cumpliera 30 años su padre murió. Desde muy pequeño mostró su talento para los números y para el lenguaje. Aprendió a leer solo, y sin que nadie lo ayudara, aprendió muy rápido la aritmética desde muy pequeño.

Estudios

A los 7 años ingresó a la escuela primaria en su natal Brunswick. Era una escuela con disciplina medieval, regida por un tal Buttner que tenia aterrorizados a los alumnos con sus métodos de enseñanza. De cualquier manera en ese lugar fue donde el pequeño Gauss comenzó a abrirse camino y a darse a conocer en ámbitos más amplios.

Una mañana en un salón de clases. El profesor, ante un grupo de niños de alrededor de 10 años de edad, estaba molesto por algún mal comportamiento del grupo y les puso un problema en el pizarrón que según él les tomaría un buen rato terminar; así, de paso, podría descansar. En esos tiempos los niños llevaban una pequeña pizarra en la cual hacían sus ejercicios. Y el profesor dijo que mientras fueran acabando pusieran las pizarras en su escritorio para que luego las revisara.

El problema consistía en sumar los primeros cien números enteros, es decir, encontrar la suma de todos los números del 1 al 100. A los pocos segundos de haber planteado el problema se levantó un niño y deposito su pizarra sobre el escritorio del maestro. Éste, convencido de que aquel niño no quería trabajar, ni se molestó en ver el resultado; prefirió esperar a que todos terminaran. Un poco más de media hora después comenzaron a levantarse los demás niños para dejar su pizarra, hasta que finalmente todo el grupo termino.

Para sorpresa del profesor de todo los resultados el único correcto era el del muchacho, mando a llamar al chico y le pregunto si estaba seguro de su resultado y como lo había encontrado tan rápido, el niño respondió: "Mire maestro, antes de empezar a sumar mecánicamente los 100 primeros números me di cuenta que si sumaba el primero y el último obtenía 101; al sumar el segundo y el penúltimo también se obtiene 101, al igual de sumar el tercero con el antepenúltimo, y así sucesivamente hasta llegar hasta los de los números centrales que son 50 y 51 que también suman 101. Entonces lo que hice fue multiplicar 101* 50 para obtener mi resultado de 5.050." En esa época ya se habían descubierto procedimientos para hacer sumas y otras operaciones con series de números arbitrariamente grandes. Lo sorprendente del caso es que un niño de 10 años se diera cuenta de cómo hacerlo.

Desde que Gauss conoció a Bartels sus progresos en Matemáticas se aceleraron. Ambos estudiaban juntos, se apoyaban y se ayudaban para descifrar y entender los manuales de álgebra y de análisis elemental que tenían. En estos años se empezaron a gestar algunas de las ideas y formas de ver las matemáticas que caracterizaron posteriormente a Gauss. Se dio cuenta, por ejemplo, del poco rigor en muchas demostraciones de los grandes matemáticos que le procedieron, como Newton, Euler, Lagrange y otros más.

Adolescencia

A los 12 años ya miraba con cierto recelo los fundamentos de la geometría, y a los 16 tuvo sus primeras ideas intuitivas sobre la posibilidad de otro tipo de geometría.

Gauss tenía 14 años cuando conoció al duque Ferdinand; éste quedo fascinado por lo que había oído del muchacho y por su modestia y timidez. Decidió solventar todos los gastos de Gauss para asegurara que su educación llegara a un buen fin. Al año siguiente de conocer al duque, Gauss ingresó al Colegio Carolino para continuar sus estudios, y lo que sorprendió a todos fue su facilidad para las lenguas. Aprendió y dominó el griego y el latín en muy poco tiempo. Estuvo tres años en el Colegio Carolino, y al salir no tenia claro si quería dedicarse a las matemáticas o a la filología. En esta época ya había descubierto su ley de los mínimos cuadrados, este trabajo marca el interés de Gauss por la teoría de errores de observación y su distribución.

A los 17 años Gauss se dio a la tarea de completar lo que a su juicio habían dejado a medias sus predecesores en materia de teoría de números. Así descubrió su pasión por la aritmética, área en la que poco después tuvo sus primeros triunfos. Su gusto por la aritmética prevaleció por toda su vida ya que para él “La matemática es la reina de las ciencias y la aritmética es la reina de las matemáticas”.

Vida laboral

En 1807 aceptó el puesto de profesor de astronomía en el Observatorio de Gotinga, cargo en el que permaneció toda su vida. Dos años más tarde, su primera esposa, con quien había contraído matrimonio en 1805, falleció al dar a luz a su tercer hijo; más tarde se casó en segundas nupcias y tuvo tres hijos más. En esos años Gauss maduró sus ideas sobre geometría no euclidiana, esto es, la construcción de una geometría lógicamente coherente que prescindiera del postulado de Euclides de las paralelas; aunque no publicó sus conclusiones, se adelantó en más de treinta años a los trabajos posteriores de Lobachewski y Bolyai.

Invenciones

Completó su magnum opus, Disquisitiones Arithmeticae a los veintiún años (1798), aunque no sería publicado hasta 1801. Un trabajo que fue fundamental para que la teoría de los números se consolidara y ha moldeado esta área hasta los días presentes.

En 1796 demostró que se puede dibujar el polígono regular de 17 lados con regla y compás. Fue el primero en probar rigurosamente el Teorema Fundamental del Álgebra (disertación para su tesis doctoral en 1799), aunque una prueba casi completa de dicho teorema fue hecha por Jean Le Rond d'Alembert anteriormente.

En 1801 publicó el libro Disquisitiones Arithmeticae, con seis secciones dedicadas a la Teoría de números, dándole a esta rama de las matemáticas una estructura sistematizada. En la última sección del libro expone su tesis doctoral. Ese mismo año predijo la órbita del asteroide Ceres aproximando parámetros por mínimos cuadrados.

En 1809 fue nombrado director del Observatorio de Göttingen. En este mismo año publicó Theoria motus corporum coelestium in sectionibus conicis Solem ambientium describiendo cómo calcular la órbita de un planeta y cómo refinarla posteriormente. Profundizó sobre ecuaciones diferenciales y secciones cónicas.

Otros resultados

Un nuevo planeta

El descubrimiento del "nuevo planeta", llamado posteriormente Ceres, el primer día del siglo XIX por el astrónomo Giuseppe Piazzi, sedujo enormemente al joven matemático. Era necesario determinar con exactitud la órbita de Ceres para ponerlo de nuevo al alcance los telescopios, Gauss acepto este reto y Ceres fue redescubierto un año después, en el lugar que el había predicho con sus detallados cálculos. Su técnica consistió en demostrar como las variaciones en los datos de origen experimental podían representarse mediante una curva acampanada (hoy conocida como campana de Gauss). También utilizó el método de mínimos cuadrados. Parecido éxito tuvo en la determinación de la órbita del asteroide Pallas, teniendo en cuenta en sus cálculos, las perturbaciones producidas por los otros planetas del sistema solar.

Gauss y la Geodesia

Hacia 1820 Gauss comenzó a trabajar en geodesia (determinación de la forma y tamaño de la tierra), tanto de forma teórica como en forma práctica. En 1821 se le encargo, por parte de los gobiernos de Hannover y Dinamarca, el estudio geodésico de Hannover. A tal fin Gauss ideó el heliotropo, instrumento que refleja la luz del Sol en la dirección especificada, pudiendo alcanzar una distancia de 100 Km y haciendo posible la alineación de los instrumentos topográficos. Trabajando con los datos obtenidos en sus observaciones elaboró una teoría sobre superficies curvas, según la cual, las características de una superficie se pueden conocer midiendo la longitud de las curvas contenidas en ella. A partir de los problemas para determinar una porción de superficie terrestre surgieron problemas más profundos, relativos a todas las superficies alabeadas, terminándose por desarrollar el primer gran periodo de la geometría diferencial.

En el mundo del magnetismo

A partir de 1831 comenzó a trabajar con el físico Wilhelm Weber en la investigación teórica y experimental del magnetismo Ambos inventaron un magnetómetro y organizaron en Europa una red de observaciones para medir las variaciones del campo magnético terrestre. Gauss pudo demostrar el origen del campo estaba en el interior de la tierra. Gauss y Weber trabajaron también con las posibilidades del telégrafo, el suyo, fue probablemente el primero que funcionó de manera práctica, adelantándose en 7 años a la patente de Morse.

Otras áreas

Otras áreas de la física que Gauss estudió fueron la mecánica, la acústica, la capilaridad y, muy especialmente, la óptica, disciplina sobre la que publicó el tratado Investigaciones dióptricas (1841), en las cuales demostró que un sistema de lentes cualquiera es siempre reducible a una sola lente con las características adecuadas. Fue tal vez la última aportación fundamental de Karl Friedrich Gauss, un científico cuya profundidad de análisis, amplitud de intereses y rigor de tratamiento le merecieron en vida el apelativo de «príncipe de los matemáticos».

Muerte

Fallece en Göttingen, Alemania el 23 de febrero de 1855

Obra Maestra

La primera estancia de Gauss en Gotinga duro tres años, que fueron de los más productivos de su vida. Regreso a su natal Brunswick a finales de 1798 sin haber recibido ningún titulo en la universidad, pero su primera obra maestra estaba casi lista. La obra estuvo lista a finales del año 1798, pero fue hasta 1801. Gauss la escribió en latín y la tituló Disquisitiones arithmeticae.

Por supuesto, este libro esta dedicado a su mecenas, el duque Ferdinand, por quien Gauss sentía mucho respeto y agradecimiento. Es un tratado de la Teoría de números en el que se sintetiza y perfecciona todo el trabajo previo en esta área. La obra consta de 8 capítulos pero el octavo no se pudo imprimir por cuestiones financieras. El Teorema fundamental del álgebra establece que un polinomio en una variable, no constante y a coeficientes complejos, tiene tantas raíces como su grado.

El polígono

La primera aportación de Gauss a las matemáticas fue la construcción del polígono regular de 17 lados. Los primeros en tratar el tema, la escuela geométrica ligada a Pitágoras, Eudoxo, Euclides y Arquímedes, impusieron para las construcciones geométricas la condición de que sólo podría utilizarse regla y compás. Gauss no sólo logró la construcción del polígono de 17 lados, también encontró la condición que deben cumplir los polígonos que pueden construirse por este método: El número de sus lados ha de ser potencia de dos o bien, potencia de 2 multiplicada por uno o más números primos impares distintos del tipo llamado números primos de Fermat. Gauss demostró este teorema combinando un razonamiento algebraico con otro geométrico. Esta técnica utilizada para la demostración, se ha convertido en una de las más usadas en matemáticas: trasladar un problema desde un dominio inicial ( la geometría en este caso) a otro (álgebra) y resolverlo en este último.

El príncipe de las matemáticas

....cuando el famoso viajero y aficionado a las ciencias barón Alexander von Humboldt preguntó a Laplace quién era el más grande matemático de Alemania, Laplace replicó Plaff. "Y entonces Gauss, ¿qué?", preguntó el asombrado von Humboldt. "Oh, - dijo Laplace-, Gauss es el mayor matemático del mundo."

Fuentes