Rozamiento

Rozamiento
Información sobre la plantilla
Rozam.jpg
Concepto:El rozamiento se debe a las irregularidades microscópicas de las superficies. Cuando dos superficies están en contacto, sus irregularidades tienden a encajarse, lo que impide que ambas superficies se deslicen suavemente una sobre otra. Un lubricante eficaz forma una capa entre las superficies que impide que las irregularidades entren en contacto.


Rozamiento. En mecánica, o fuerza de fricción a la resistencia que se opone al movimiento (fuerza de fricción cinética) o a la tendencia al movimiento (fuerza de fricción estática) de dos superficies en contacto. Se genera debido a las imperfecciones, especialmente microscópicas, entre las superficies en contacto. Estas imperfecciones hacen que la fuerza entre ambas superficies no sea perfectamente perpendicular a éstas, sino que forma un ángulo (el ángulo de rozamiento) con la normal. Por tanto esta fuerza resultante se compone de la fuerza normal (perpendicular a las superficies en contacto) y de la fuerza de rozamiento, paralela a las superficies en contacto.

Introducción

Históricamente, el estudio del rozamiento comienza con Leonardo da Vinci que dedujo las leyes que gobiernan el movimiento de un bloque rectangular que desliza sobre una superficie plana. Sin embargo, este estudio pasó desapercibido.

En el siglo XVII, Guillaume Amontons, físico francés, redescubrió las leyes del rozamiento estudiando el deslizamiento seco de dos superficies planas. Las conclusiones de Amontons son esencialmente las que estudiamos en los libros de Física General:

  • La fuerza de rozamiento se opone al movimiento de un bloque que desliza sobre un plano.
  • La fuerza de rozamiento es proporcional a la fuerza normal que ejerce el plano sobre el bloque.
  • La fuerza de rozamiento no depende del área aparente de contacto.

El científico francés Coulomb añadió una propiedad más:

Una vez empezado el movimiento, la fuerza de rozamiento es independiente de la velocidad.

Explicación del origen del rozamiento por contacto

La mayoría de las superficies, aún las que se consideran pulidas son extremadamente rugosas a escala microscópica. Los picos de las dos superficies que se ponen en contacto determinan el área real de contacto que es una pequeña proporción del área aparente de contacto (el área de la base del bloque). El área real de contacto aumenta cuando aumenta la presión (la fuerza normal) ya que los picos se deforman.

Los metales tienden a soldarse en frío, debido a las fuerzas de atracción que ligan a las moléculas de una superficie con las moléculas de la otra. Estas soldaduras tienen que romperse para que el deslizamiento se produzca. Además, existe siempre la incrustación de los picos con los valles. Este es el origen del rozamiento estático.

Cuando el bloque desliza sobre el plano, las soldaduras en frío se rompen y se rehacen constantemente. Pero la cantidad de soldaduras que haya en cualquier momento se reduce por debajo del valor estático, de modo que el coeficiente de rozamiento cinético es menor que el coeficiente de rozamiento estático.

Finalmente, la presencia de aceite o de grasa en las superficies en contacto evita las soldaduras al revestirlas de un material inerte.

Leyes del rozamiento para cuerpos sólidos

  • La fuerza de rozamiento es de igual dirección y sentido contrario al movimiento del cuerpo.
  • La fuerza de rozamiento es prácticamente independiente del área de la superficie de contacto.
  • La fuerza de rozamiento depende de la naturaleza de los cuerpos en contacto, así como del estado en que se encuentren sus superficies.
  • La fuerza de rozamiento es directamente proporcional a la fuerza normal que actúa entre las superficies de contacto.
  • Para un mismo par de cuerpos, el rozamiento es mayor en el momento de arranque que cuando se inicia el movimiento.
  • La fuerza de rozamiento es prácticamente independiente de la velocidad con que se desplaza un cuerpo sobre otro.

Formulación matemática

Existen dos tipos de roce: El estático y el cinético o dinámico. El primero es aquel que impide que un objeto inicie un movimiento y es igual a la fuerza neta aplicada sobre el cuerpo, solo que con sentido opuesto (ya que impide el movimiento). El segundo es una fuerza de magnitud constante que se opone al movimiento una vez que éste ya comenzó. En resumen, lo que diferencia a un roce con el otro es que el estático actúa cuando el cuerpo está quieto y el dinámico cuando está en movimiento.

El roce estático es siempre mayor o igual al coeficiente de roce entre los dos objetos (número que se mide experimentalmente y está tabulado) multiplicado por la fuerza normal. El roce dinámico, en cambio, es igual al coeficiente de rozamiento, denotado por la letra griega μ, por la normal en todo instante. No se tiene una idea perfectamente clara de la diferencia entre el rozamiento dinámico y el estático, pero se tiende a pensar que el estático es mayor que el dinámico, porque al permanecer en reposo ambas superficies, pueden aparecer enlaces iónicos, o incluso micro soldaduras entre las superficies. Éste fenómeno es tanto mayor cuanto más perfectas son las superficies. Un caso más o menos común es el del gripaje de un motor por estar mucho tiempo parado (no solo se gripa por una temperatura muy elevada), ya que al permanecer las superficies del pistón y la camisa durante largo tiempo en contacto y en reposo, pueden llegar a soldarse entre sí.

Rozamiento estático

En el caso del rozamiento estático, existe un rango de fuerzas que pueden ser aplicadas al cuerpo y no una única como es el caso del roce dinámico. Para cualquier fuerza que cumpla con la expresión:

Rozamiento Estático




El cuerpo se mantendrá en reposo.

Fórmula

es el coeficiente de roce estático.



N es la fuerza normal entre ambas superficies.

Valores de los coeficientes de fricción

Coeficientes de rozamiento de algunas sustancias
Materiales en contacto Fricción estática Fricción cinética
Hielo // Hielo 0,1 0,11
Vidrio // Vidrio 0,9 0,4
Vidrio // Madera 0,25 0,2
Madera // Cuero 0,4 0,3
Madera // Piedra 0,7 0,3
Madera // Madera 0,4 0,3
Acero // Acero 0,74 0,57
Acero // Hielo 0,03 0,02
Acero // Latón 0,5 0,4
Acero // Teflón 0,04 0,04
Teflón // Teflón 0,04 0,04
Caucho // Cemento (seco) 1,0 0,8
Caucho // Cemento (húmedo) 0,3 0,25
Cobre // Hierro (fundido) 1,1 0,3
Esquí (encerachimbodo) // Nieve (0ºC) 0,1 0,05
Articulaciones humanas 0,01 0,003

Fuentes