Oído

De EcuRed
Oído
Información sobre la plantilla
Concepto:Es uno de los cinco sentidos existentes en los seres vivos, siendo aquel que permite percibir los sonidos.
El oído conforma los órganos de equilibrio y audición. También se le denomina órgano vestibulococlear dentro del estudio de la medicina.

Contenido

Evolución

Es un órgano que se encuentra muy desarrollado, principalmente en mamíferos inferiores terrestres y acuáticos, tal es el caso de los félidos y los grandes cetáceos en donde, gracias a su evolución fisioanatómica, se han hiperdesarrollado mecanorreceptocitos especializados en destacar el sentido de equilibrio y audición en perfecta armonía. En el caso del ser humano esta evolución no está tan desarrollada.

El sentido de la audición y el sistema auditivo

La generación de sensaciones auditivas en el ser humano es un proceso extraordinariamente complejo, el cual se desarrolla en tres etapas básicas:

La captación, procesamiento y transducción de los estímulos sonoros se llevan a cabo en el oído propiamente dicho, mientras que la etapa de procesamiento neural, en la cual se producen las diversas sensaciones auditivas, se encuentra ubicada en el cerebro. Así pues, se pueden distinguir dos regiones o partes del sistema auditivo: la región periférica, en la cual los estímulos sonoros conservan su carácter original de ondas mecánicas hasta el momento de su conversión en señales electroquímicas, y la región central, en la cual se transforman dichas señales en sensaciones.

En la región central también intervienen procesos cognitivos, mediante los cuales se asigna un contexto y un significado a los sonidos ; es decir, permiten reconocer una palabra o determinar que un sonido dado corresponde a un violín o a un piano. El presente trabajo se limita a estudiar y utilizar solamente los aspectos perceptuales del sistema auditivo; esto es, aquellos que son independientes del contexto y del significado y que, en buena parte, se localizan en la región periférica.

Partes del Oído

El oído está formado por tres secciones diferentes: el oído externo, el oído medio y el oído interno. Estas partes trabajan juntas, para que puedas oír y procesar sonidos todo el día, cada día.

El oído externo

Anatomía del oído
Anatomía del oído

El oído externo recibe también el nombre de pabellón de la oreja o aurícula y esta es la parte que se puede ver. Es donde la gente se hace agujeros para llevar pendientes y donde un amigo te susurra algo cuando te cuenta un secreto.

El oído externo recoge los sonidos. El sonido viaja en ondas invisibles a través del aire y el oído externo los recoge. Después de entrar, el sonido viaja hasta el conducto auditivo externo antes de llegar al oído medio. La otra tarea del conducto auditivo es proteger a las demás partes del oído fabricando cera.

La cera tiene unos componentes químicos especiales que combaten las infecciones que podrían lesionar la piel dentro del conducto auditivo. También atrapa partículas de suciedad para ayudar a mantener el conducto auditivo limpio.

El oído medio

Conducto auditivo externo que conduce al medio
Conducto auditivo externo que conduce al medio

El conducto auditivo externo conduce al oído medio. La función del oído medio es recoger las ondas de sonido que recibe del oído externo, convertirlas en vibraciones y llevarlas hasta el oído interno.

Esto lo hace usando el tímpano que en realidad separa el oído externo del oído medio y los tres huesos más pequeños y delicados del cuerpo llamados osículos. El tímpano es un trozo de piel delgada adherida al primer osículo, un pequeño hueso llamado martillo. El martillo está unido a otro pequeño hueso llamado yunque. Y finalmente, el yunque está unido al hueso más pequeño de todo el cuerpo, el estribo.

Cuando las ondas de sonido llegan hasta el conducto auditivo externo y al tímpano, éste empieza a vibrar. Las vibraciones pasan por los tres pequeños huesos el martillo, el yunque y el estribo. Estos tres huesos transfieren estas vibraciones a la parte más profunda del oído: el oído interno.

El oído medio también tiene otra misión. Ayuda a que el tímpano soporte la presión. El oído medio está conectado a la parte posterior de la nariz por un conducto estrecho llamado trompa de Eustaquio. La trompa de Eustaquio y el oído medio mantienen la misma presión del aire en ambos lados del tímpano.

Normalmente el conducto permanece cerrado a menos que bosteces o tragues, y probablemente hayas sentido cómo se abre la trompa de Eustaquio si has viajado en avión o has subido a una montaña. Cuando estás a una altura muy elevada, como cuando vuelas, sientes como tus oídos se destapan. En realidad es la trompa de Eustaquio que se abre para asegurarse de que la presión del aire es la misma en ambos lados del tímpano para que el tímpano pueda funcionar adecuadamente y no sufra lesiones.

El oído interno

Cerumen
Cerumen

Después de que las ondas sonoras se conviertan en vibraciones en el oído medio, entran en el oído interno. Las vibraciones llegan a la cóclea, un conducto pequeño y enroscado en el oído interno. La cóclea está llena de líquido y recubierta de células con miles de pelitos en la superficie. Estos pelitos no son como los que tienes en la cabeza o en los brazos son más pequeños y sólo pueden verse con un microscopio.

Cuando las vibraciones del sonido tocan el líquido de la cóclea, el líquido empieza a vibrar. Y cuando lo hace, esos pelitos se mueven. Los pelitos convierten entonces las vibraciones en señales nerviosas para que el cerebro pueda comprender el sonido.¡Al cerebro le gusta recibir mensajes en su propio lenguaje. Una vez que las señales nerviosas llegan al cerebro, éste puede interpretarlas.

Fisiología del oído

Oído externo

Anatomía y funcionamiento

El oído externo (Fig. Anatomía del oído humano) está formado por el pabellón auricular u oreja, el cual dirige las ondas sonoras hacia el conducto auditivo externo a través del orificio auditivo. El otro extremo del conducto auditivo se encuentra cubierto por la membrana timpánica o tímpano, la cual constituye la entrada al oído medio. La función del oído externo es la de recolectar las ondas sonoras y encauzarlas hacia el oído medio. Asimismo, el conducto auditivo tiene dos propósitos adicionales: proteger las delicadas estructuras del oído medio contra daños y minimizar la distancia del oído interno al cerebro, reduciendo el tiempo de propagación de los impulsos nerviosos

Respuesta en frecuencia y localización de las fuentes de sonido

El conducto auditivo es un "tubo" de unos 2 cm de longitud, el cual influye en la respuesta en frecuencia del sistema auditivo. Dada la velocidad de propagación del sonido en el aire (aprox. 334 m/s), dicha longitud corresponde a 1/4 de la longitud de onda de una señal sonora de unos 4 kHz. Este es uno de los motivos por los cuales el aparato auditivo presenta una mayor sensibilidad a las frecuencias cercanas a los 4 kHz, como se verá en el siguiente capítulo. Adicionalmente, el pabellón auricular, junto con la cabeza y los hombros, contribuye a modificar el espectro de la señal sonora. Las señales sonoras que entran al conducto auditivo externo sufren efectos de difracción debidos a la forma del pabellón auricular y la cabeza, y estos efectos varían según la dirección de incidencia y el contenido espectral de la señal; así, se altera el espectro sonoro debido a la difracción. Estas alteraciones, en forma de "picos" y "valles" en el espectro, son usadas por el sistema auditivo para determinar la procedencia del sonido en el llamado "plano medio" (plano imaginario perpendicular a la recta que une ambos tímpanos).

Oído medio

Anatomía

El oído medio (Fig. Propagación del sonido a través del oído medio e interno) está constituido por una cavidad llena de aire, dentro de la cual se encuentran tres huesecillos, denominados martillo, yunque y estribo, unidos entre sí en forma articulada. Uno de los extremos del martillo se encuentra adherido al tímpano, mientras que la base del estribo está unida mediante un anillo flexible a las paredes de la ventana oval, orificio que constituye la vía de entrada del sonido al oído interno. Finalmente, la cavidad del oído medio se comunica con el exterior del cuerpo a través de la trompa de Eustaquio, la cual es un conducto que llega hasta las vías respiratorias y que permite igualar la presión del aire a ambos lados del tímpano.

Propagación del sonido y acople de impedancias

Los sonidos, formados por oscilaciones de las moléculas del aire, son conducidos a través del conducto auditivo hasta el tímpano. Los cambios de presión en la pared externa de la membrana timpánica, asociados a la señal sonora, hacen que dicha membrana vibre siguiendo las oscilaciones de dicha señal. Las vibraciones del tímpano se transmiten a lo largo de la cadena de huesecillos, la cual opera como un sistema de palancas, de forma tal que la base del estribo vibra en la ventana oval (ver la Fig. Propagación del sonido a través del oído medio e interno). Este huesecillo se encuentra en contacto con uno de los fluidos contenidos en el oído interno; por lo tanto, el tímpano y la cadena de huesecillos actúan como un mecanismo para transformar las vibraciones del aire en vibraciones del fluido.

Propagación del sonido a través del oído medio e interno
Propagación del sonido a través del oído medio e interno

Ahora bien, para lograr que la transferencia de potencia del aire al fluido sea máxima, debe efectuarse un acoplamiento entre la impedancia mecánica característica del aire y la del fluido, puesto que esta última es mucho mayor que la primera. Un equivalente mecánico de un transformador (el acoplador de impedancias eléctricas) es, precisamente, una palanca; por ende, la cadena de huesecillos actúa como acoplador de impedancias. Además, la relación entre las superficies del tímpano y de la base del estribo (en la ventana oval) introduce un efecto de acoplamiento adicional, lográndose una transformación de impedancias del orden de 1:20, con lo cual se minimizan las pérdidas por reflexión. El máximo acoplamiento se obtiene en el rango de frecuencias medias, en torno a 1 kHz. En la Fig. Esquema de la propagación del sonido a través del oído medio se representa en forma esquemática la transmisión del sonido del oído externo al interno, a través del oído medio.

Esquema de la propagación del sonido a través del oído medio
Esquema de la propagación del sonido a través del oído medio

Reflejo timpánico o acústico

Cuando se aplican sonidos de gran intensidad (> 90 dB SPL) al tímpano, los músculos tensores del tímpano y el estribo se contraen de forma automática, modificando la característica de transferencia del oído medio y disminuyendo la cantidad de energía entregada al oído interno. Este "control de ganancia" se denomina reflejo timpánico o auditivo, y tiene como propósito proteger a las células receptoras del oído interno frente a sobrecargas que puedan llegar a destruirlas. Este reflejo no es instantáneo, sino que tarda de 40 a 160 ms en producirse. El reflejo timpánico debe ser tomado en cuenta en cualquier modelo matemático del procesamiento del sonido en el aparato auditivo, siempre que se trabaje con sonidos de gran intensidad, puesto que es un mecanismo no lineal que introduce un término cuadrático en la relación entrada-salida del oído medio.

Respuesta en frecuencia combinada del oído externo y el oído medio

El conjunto formado por el oído externo y el oído medio forman un sistema cuya respuesta en frecuencia es de tipo pasabajos, como se muestra en la Fig. Respuesta en frecuencia combinada del oído externo y el oído medio En el intervalo cercano a los 4 kHz se observa un pequeño efecto de ganancia, debido a las características del conducto auditivo. Esta respuesta sólo es válida cuando el sistema se comporta de modo lineal; es decir, cuando la intensidad del sonido no es muy elevada, para evitar que actúe el reflejo timpánico.

Respuesta en frecuencia combinada del oído externo y el oído medio
Respuesta en frecuencia combinada del oído externo y el oído medio

Oído interno

El oído interno representa el final de la cadena de procesamiento mecánico del sonido, y en él se llevan a cabo tres funciones primordiales: filtraje de la señal sonora, transducción y generación probabilística de impulsos nerviosos.

Anatomía

En el oído interno se encuentra la cóclea o caracol, la cual es un conducto rígido en forma de espiral de unos 35 mm de longitud, lleno con dos fluidos de distinta composición. El interior del conducto está dividido en sentido longitudinal por la membrana basilar y la membrana de Reissner, las cuales forman tres compartimientos o escalas (Fig. Corte transversal de la cóclea o caracol). La escala vestibular y la escala timpánica contienen un mismo fluido (perilinfa), puesto que se interconectan por una pequeña abertura situada en el vértice del caracol, llamada helicotrema. Por el contrario, la escala media se encuentra aislada de las otras dos escalas, y contiene un líquido de distinta composición a la perilinfa (endolinfa).

Corte transversal de la cóclea o caracol
Corte transversal de la cóclea o caracol

La base del estribo, a través de la ventana oval, está en contacto con el fluido de la escala vestibular, mientras que la escala timpánica desemboca en la cavidad del oído medio a través de otra abertura (ventana redonda) sellada por una membrana flexible (membrana timpánica secundaria). Sobre la membrana basilar y en el interior de la escala media se encuentra el órgano de Corti (Fig.Órgano de Corti), el cual se extiende desde el vértice hasta la base de la cóclea y contiene las células ciliares que actúan como transductores de señales sonoras a impulsos nerviosos. Sobre las células ciliares se ubica la membrana tectorial, dentro de la cual se alojan las prolongaciones o cilios de las células ciliares externas. Dependiendo de su ubicación en el órgano de Corti, se pueden distinguir dos tipos de células ciliares: internas y externas. Existen alrededor de 3500 células ciliares internas y unas 20000 células externas. Ambos tipos de células presentan conexiones o sinapsis con las fibras nerviosas aferentes (que transportan impulsos hacia el cerebro) y eferentes (que transportan impulsos provenientes del cerebro), las cuales conforman el nervio auditivo. Sin embargo, la distribución de las fibras es muy desigual: más del 90% de las fibras aferentes inervan a las células ciliares internas, mientras que la mayoría de las 500 fibras eferentes inervan a las células ciliares externas . El propósito de ambos tipos de células y de la distribución de las conexiones nerviosas se estudia más adelante, en la sección III.6, "Mecanismo de transducción".

Órgano de Corti
Órgano de Corti

Propagación del sonido en la cóclea

Las oscilaciones del estribo provocan oscilaciones en el fluido de la escala vestibular (perilinfa). La membrana de Reissner, la cual separa los fluidos de la escala vestibular y la escala media, es sumamente delgada y, en consecuencia, los líquidos en ambas escalas pueden tratarse como uno solo desde el punto de vista de la dinámica de los fluidos. Así, las oscilaciones en la perilinfa de la escala vestibular se transmiten a la endolinfa y de ésta a la membrana basilar (Fig. Corte transversal de un conducto de la cóclea); la membrana basilar, a su vez, provoca oscilaciones en el fluido de la escala timpánica. Puesto que tanto los fluidos como las paredes de la cóclea son incompresibles, es preciso compensar el desplazamiento de los fluidos; esto se lleva a cabo en la membrana de la ventana redonda, la cual permite "cerrar el circuito hidráulico"

Corte transversal de un conducto de la cóclea
Corte transversal de un conducto de la cóclea

La propagación de las oscilaciones del fluido en la escala vestibular a la timpánica no sólo se lleva a cabo a través de la membrana basilar; para sonidos de muy baja frecuencia, las vibraciones se transmiten a través de la abertura situada en el vértice de la cóclea (helicotrema). En conclusión, el sonido propagado a través del oído externo y medio llega hasta la cóclea, donde las oscilaciones en los fluidos hacen vibrar a la membrana basilar y a todas las estructuras que ésta soporta.

La cóclea como analizador en frecuencia

La membrana basilar es una estructura cuyo espesor y rigidez no es constante: cerca de la ventana oval, la membrana es gruesa y rígida, pero a medida que se acerca hacia el vértice de la cóclea se vuelve más delgada y flexible. La rigidez decae casi exponencialmente con la distancia a la ventana oval; esta variación de la rigidez en función de la posición afecta la velocidad de propagación de las ondas sonoras a lo largo de ella, y es responsable en gran medida de un fenómeno muy importante: la selectividad en frecuencia del oído interno.

Ondas viajeras y transformación de frecuencia a posición

Las ondas de presión generadas en la perilinfa a través de la ventana oval tienden a desplazarse a lo largo de la escala vestibular. Debido a que el fluido es incompresible la membrana basilar se deforma, y la ubicación y amplitud de dicha deformación varía en el tiempo a medida que la onda de presión avanza a lo largo de la cóclea. Para comprender el modo de propagación de las ondas de presión, supóngase que se excita el sistema auditivo con una señal sinusoidal de una frecuencia dada: La membrana basilar vibrará sinusoidalmente, pero la amplitud de la vibración irá en aumento a medida que se aleja de la ventana oval (debido a la variación en la velocidad de propagación), hasta llegar a un punto en el cual la deformación de la membrana basilar sea máxima; en ese punto de "resonancia", la membrana basilar es acústicamente "transparente" (es decir, se comporta como si tuviera un orificio), de modo que la amplitud de la vibración y, por ende, la transmisión de la energía de la onda al fluido de la escala timpánica es máxima en dicho punto. A partir de esa región, la onda no puede propagarse eficientemente, de modo que la amplitud de la vibración se atenúa muy rápidamente a medida que se acerca al helicotrema. En la Fig. Onda viajera en la membrana basilar se observa la onda en la membrana basilar en un instante de tiempo.

Onda viajera en la membrana basilar
Onda viajera en la membrana basilar

En este modo de propagación, las ondas de presión son ondas viajeras, en las cuales (a diferencia de las ondas estacionarias) no existen nodos. En la Fig. Ondas viajeras para un tono de 200 Hz se observa la amplitud de oscilación de la membrana basilar en dos instantes de tiempo, junto con la envolvente de la onda viajera, en función de la distancia al estribo.

Ondas viajeras para un tono de 200 Hz
Ondas viajeras para un tono de 200 Hz

La ubicación del máximo de la envolvente de la onda viajera depende de la frecuencia de la señal sonora, como puede observarse en la Fig. Transformación de frecuencia a posición en la membrana basilar. mientras menor es la frecuencia del tono, mayor es la distancia que viaja la onda a lo largo de la membrana antes de ser atenuada, y viceversa. De esta forma, la membrana basilar dispersa las distintas componentes de una señal de espectro complejo en posiciones bien definidas respecto a la ventana oval.

Transformación de frecuencia a posición en la membrana basilar
Transformación de frecuencia a posición en la membrana basilar

Selectividad en frecuencia de la membrana basilar

Como se ha visto, las altas frecuencias contenidas en un estímulo sonoro se atenúan a medida que la onda se desplaza hacia el helicotrema. Así, se puede considerar a la membrana basilar como un filtro pasabajos de parámetros distribuidos. Por otro lado, si se midiese la respuesta en frecuencia en un punto dado de dicha membrana1, se obtendría una respuesta de tipo pasabanda. Este comportamiento de la membrana basilar puede modelarse, con un grado de aproximación razonable, como una línea de transmisión no uniforme, representada en la Fig. Representación de la membrana basilar como una línea de transmisión. Cada etapa en paralelo representa un segmento corto de la membrana basilar. La corriente suministrada por la fuente corresponde a la velocidad del estribo. Los inductores en serie y en paralelo representan las masas del fluido y de segmentos de la membrana basilar, respectivamente; los condensadores representan la rigidez de la membrana, y se asume que su valor varía exponencialmente según la posición. Las resistencias representan pérdidas en la membrana.

Representación de la membrana basilar como una línea de transmisión
Representación de la membrana basilar como una línea de transmisión

Este modelo pasivo presenta varios inconvenientes: no considera fenómenos activos y no lineales de la membrana, no es capaz de generar una respuesta pasabanda tan estrecha como las observadas experimentalmente en tejidos vivos y, además, no toma en cuenta el hecho de que la membrana basilar es una estructura en tres dimensiones. A pesar de ello, permite representar fácilmente los fenómenos de resonancia y de ondas viajeras. En capítulos posteriores se discute un modelo análogo al anterior pero que resulta más útil en la elaboración de modelos perceptuales, en el cual se representa el efecto de la membrana basilar como el de un banco de filtros pasabanda. Si bien los parámetros que definen dicho banco de filtros se obtendrán a partir de consideraciones psicoacústicas, y no físicas o fisiológicas, se debe tener en mente que tal modelo está basado en las propiedades físicas observables de la membrana basilar y del oído interno en general.

Mecanismo de transducción

Interacción entre las membranas basilar y tectorial

El proceso de transducción o conversión de señal mecánica a electroquímica se desarrolla en el órgano de Corti, situado sobre la membrana basilar. Las vibraciones de la membrana basilar hacen que ésta se mueva en sentido vertical. A su vez la membrana tectorial, ubicada sobre las células ciliares (los transductores), vibra igualmente; sin embargo, dado que los ejes de movimiento de ambas membranas son distintos, el efecto final es el de un desplazamiento "lateral" de la membrana tectorial con respecto a la membrana basilar. Como resultado, los cilios de las células ciliares externas se "doblan" hacia un lado u otro (hacia la derecha, en la figura Desplazamiento relativo de las membranas basilar y tectorial, cuando la membrana basilar "sube"). En el caso de las células internas, aun cuando sus cilios no están en contacto directo con la membrana tectorial, los desplazamientos del líquido y su alta viscosidad (relativa a las dimensiones de los cilios) hacen que dichos cilios se doblen también en la misma dirección.

Desplazamiento relativo de las membranas basilar y tectorial
Desplazamiento relativo de las membranas basilar y tectorial

Células ciliares y potenciales eléctricos

La diferencia fundamental entre los dos fluidos de la cóclea, la perilinfa y la endolinfa, estriba en las distintas concentraciones de iones en los dos fluidos. De esta manera, la endolinfa se encuentra a un potencial eléctrico ligeramente positivo (ver Fig.Potenciales eléctricos en el órgano de Corti y los fluidos de la cóclea) respecto a la perilinfa.

Potenciales eléctricos en el órgano de Corti y los fluidos de la cóclea
Potenciales eléctricos en el órgano de Corti y los fluidos de la cóclea

Por otro lado, los movimientos de los cilios en una dirección determinada (hacia la derecha, en la Fig. Desplazamiento relativo de las membranas basilar y tectorial) hacen que la conductividad de la membrana de las células ciliares aumente. Debido a las diferencias de potencial existentes, los cambios en la membrana modulan una corriente eléctrica que fluye a través de las células ciliares. La consiguiente disminución en el potencial interno de las células internas provoca la activación de los terminales nerviosos aferentes, generándose un impulso nervioso que viaja hacia el cerebro. Por el contrario, cuando los cilios se doblan en la dirección opuesta, la conductividad de la membrana disminuye y se inhibe la generación de dichos impulsos. Se pueden destacar dos aspectos de este proceso de transducción: primero, que la generación de impulsos nerviosos es un fenómeno probabilístico; segundo, que el proceso se comporta como un rectificador de media onda, puesto que la probabilidad de activación de las fibras nerviosas "sigue" a las porciones "positivas" de la señal sonora (equivalentes a desplazamientos hacia "arriba" de la membrana basilar, en la Fig. Desplazamiento relativo de las membranas basilar y tectorial), mientras que se hace cero en las porciones "negativas" de la onda.

Interacción entre células ciliares internas y externas

Las fibras aferentes están conectadas mayormente con las células ciliares internas, por lo que es posible concluir con certeza que éstas son los verdaderos "sensores" del oído. Por el contrario, el papel de las células ciliares externas (más numerosas que las internas) era objeto de especulaciones hasta hace pocos años. Recientemente se ha comprobado que dichas células no operan como receptores, sino como "músculos", es decir, como elementos móviles que pueden modificar las oscilaciones en la membrana basilar. La actuación de las células ciliares externas parece ser la siguiente: para niveles de señal elevados, el movimiento del fluido que rodea los cilios de las células internas es suficiente para doblarlos, y las células externas se saturan. Sin embargo, cuando los niveles de señal son bajos, los desplazamientos de los cilios de las células internas son muy pequeños para activarlas; en este caso, las células externas se "alargan", aumentando la magnitud de la oscilación hasta que se saturan.

Este es un proceso no lineal de realimentación positiva de la energía mecánica, de modo que las células ciliares externas actúan como un control automático de ganancia, aumentando la sensibilidad del oído.

Este nuevo modelo del mecanismo de transducción nos indica que el conjunto formado por la membrana basilar y sus estructuras anexas forman un sistema activo, no lineal y con realimentación, y permite explicar dos fenómenos asociados al oído interno: el "tono de combinación", generado a partir de dos tonos de distinta frecuencia por un elemento no lineal que contiene un término cúbico, y las "emisiones otoacústicas", las cuales consisten en tonos generados en el oído interno en forma espontánea o estimulada, y que pueden llegar a ser audibles.

Selectividad en frecuencia de la cóclea

Debido a la acción de filtraje de la membrana basilar, cada célula transductora procesa una versión del estímulo sonoro filtrada de modo diferente. Esta acción de filtraje de la membrana basilar por sí sola equivale a la de filtros cuya respuesta en frecuencia es relativamente "ancha". Ahora bien, la realimentación positiva provocada por las células ciliares externas contribuye a aumentar la selectividad del sistema auditivo.

Esto puede comprobarse midiendo la respuesta de una única fibra nerviosa ante variaciones en la frecuencia y la amplitud del estímulo sonoro; las curvas de sintonía así obtenidas indican una respuesta de tipo pasa banda mucho más angosta que la debida al efecto de la membrana basilar como elemento pasivo. Adicionalmente, experimentos recientes han permitido determinar que la selectividad del oído interno es virtualmente idéntica a la selectividad del sistema auditivo en su totalidad, estimada por métodos psicoacústicos.

Equilibrio

Los oídos hacen más cosas que simplemente escuchar -también te ayudan a mantener el equilibrio. En el oído interno, hay tres pequeños bucles llamados conductos semicirculares. Están situados justo encima de la cóclea. Estos pequeños bucles tienen mucho en común con la cóclea: están llenos de líquido y tienen miles de pelitos microscópicos. Pero tienen una función diferente: la cóclea sirve para oír y los conductos semicirculares para el equilibrio.

¿Qué evita que te caigas al suelo cuando te agachas para tocar los dedos de los pies en la clase de gimnasia? Pues todo lo que sucede en tus conductos semicirculares. Cuando mueves la cabeza, el líquido en los conductos semicirculares se mueve también. El líquido mueve los pelillos, que envían un mensaje nervioso al cerebro sobre la posición de la cabeza. En menos de un segundo, el cerebro averigua dónde está tu cabeza y a qué músculos enviar mensajes para que mantengas el equilibrio.

A veces, el líquido en tus conductos semicirculares sigue moviéndose después de que tú te hayas dejado de mover. Prueba llenar una taza hasta la mitad con agua. Ahora muévela un poco y luego para. ¿Notas cómo el agua sigue moviéndose aunque la taza esté quieta? Esto es lo que sucede en tus conductos semicirculares cuando das muchas vueltas o te subes a un juego en el parque se diversiones. Cuando dejas de hacerlo, el líquido aún se mueve y los pelitos aún están mandando mensajes sobre la posición de la cabeza.

Aunque estás mirando hacia delante y tus ojos le están diciendo a tu cerebro que estás quieto. Por eso, podrías sentirte mareado -el cerebro está confundido acerca de la posición de la cabeza. Una vez que el líquido deja de moverse, el cerebro recibe el mensaje correcto y te sientes mejor.

Los canales semicirculares y el vestíbulo están relacionados con el sentido del equilibrio. En estos canales hay pelos similares a los del ór­gano de Corti, y detectan los cambios de posición de la cabeza.

Los tres canales semicirculares se extienden desde el vestíbulo for­mando ángulos más o menos rectos en­tre sí, lo cual permite que los órga­nos sensoriales registren los movi­mientos que la cabeza realiza en cada uno de los tres planos del espacio: arriba y abajo, hacia adelante y ha­cia atrás, y hacia la izquierda o hacia la derecha. Sobre las células pilosas del vestíbulo se encuentran unos cristales de carbonato de cal­cio, conocidos en lenguaje técnico como otolitos y en lenguaje coloquial como arenilla del oído. Cuando la cabeza está inclinada, los otolitos cambian de posición y los pelos que se encuentran debajo responden al cambio de presión.

Los ojos y ciertas células sensoriales de la piel y de tejidos internos, también ayudan a mantener el equilibrio; pero cuando el laberinto del oído está dañado, o destruido, se producen problemas de equilibrio. Es posible que quien padezca una enfermedad o un problema en el oído interno no pueda mantenerse de pie con los ojos cerrados sin tamba­learse o sin caerse.

Importancia

Bueno, como has visto, tus oídos son geniales -¡procesan los sonidos de tu alrededor e impiden que pierdas el equilibrio! Recogen las ondas de sonido de tu reloj despertador, transforman las ondas en vibraciones y las vibraciones en impulsos nerviosos, para que el cerebro pueda decir, Esto quiere decir que es hora de levanta.

Los oídos te mantienen en equilibrio cuando metes la cabeza en la caja de cereales para encontrar el premio durante el desayuno y cuando te agachas para alcanzar la mochila de la escuela. Trata bien a tus oídos y no metas nada dentro de ellos esto podría dañar el conducto auditivo o el tímpano. Y es una buena idea tener cuidado cuando el sonido es realmente fuerte porque puede lesionarte los oídos.

Lleva tapones a los conciertos con música muy alta, mantén el volumen lo más bajo posible en tu estéreo y lleva siempre protección para los oídos si utilizas algún aparato que haga mucho ruido como los que trabajan la madera o los metales. Seguro que quieres que tus oídos lo oigan todo desde el mínimo chirrido de un grillo en el bosque hasta el partido de baloncesto más ruidoso en el gimnasio.

Al morir

En general, cuando muere una persona, el oído es el último sentido en perderse, el primero suele ser la vista, seguido del gusto, el olfato y el tacto.

Fuentes