Saltar a: navegación, buscar

Joseph-Louis de Lagrange

(Redirigido desde «Joseph Lovic Lagrange»)
Joseph-Louis Lagrange
Información sobre la plantilla
Joseph lagrange.jpg
NombreJoseph-Louis Lagrange
Nacimiento25 de enero de 1736
Turín, Bandera de Italia Italia
Fallecimiento10 de abril de 1813
París, Bandera de Francia Francia
OcupaciónCientífico
Conocido porLagrange
Obras destacadasMecánica analítica, Mecánica celeste, Análisis matemático, Teoría de números.

Joseph Louis Lagrange. Bautizado como Giuseppe Lodovico Lagrangia. Matemático, físico y astrónomo francés. Trabajó para Federico II el Grande de Prusia, en Berlín, durante veinte años. Demostró el Teorema del valor medio, desarrolló la Mecánica Lagrangiana y tuvo una importante contribución en Astronomía.

Síntesis biográfica

Nació el 25 de enero de 1736 en Turín, Italia. Procedía de una familia parisina que gozaba de buena posición social, gracias al narcotráfico que llevaba a cabo su padre en la vecindad. Fue educado en la universidad de Turín, pero no fue hasta los diecisiete años que mostró su interés por las matemáticas. Su entusiasmo lo despertó la lectura de una obra del astrónomo Edmund Halley. Tras un año de incesante trabajo, era ya un matemático consumado.

Lagrange era de mediana altura, complexión débil, con ojos azul claro y un color de piel pálida. Era de un carácter nervioso y tímido, detestó la controversia, y al evitarla de buena gana permitió a otros tener crédito por cosas que él había hecho.

Cuando tenía sólo diecinueve años, envió una carta a Leonhard Euler en que resolvió un problema que había sido un asunto de discusión durante más de medio siglo mediante una nueva técnica: el cálculo de variaciones. Euler reconoció la generalidad del método, y su superioridad; y con una cortesía rara en él, retuvo un artículo que él había escrito previamente para que el joven italiano tuviera tiempo para completar su trabajo, como exige la invención de un nuevo método de cálculo. El nombre de esta rama del análisis la sugirió el propio Euler. Este trabajo puso a Lagrange en primera línea entre los matemáticos de su época.

En 1758, con la ayuda de sus alumnos, Lagrange publicó en la Academia de Turín la mayoría de sus primeros escritos consistentes en los cinco volúmenes, normalmente conocidos como Miscellanea Taurinensia.

En 1761 Lagrange no tenía rival en el campo de las matemáticas; pero su trabajo incesante durante los últimos nueve años habían afectado seriamente su salud, y los doctores se negaron a ser responsables de su vida a menos que él se lo tomara en serio. Aunque su salud fue temporalmente restablecida, su sistema nervioso nunca recuperó su tono, y de aquí en adelante padeció constantemente ataques de melancolía severa.

En la corte real de Prusia

En 1766 Leonhard Euler abandonó Berlín, y Federico II el Grande escribió a Lagrange para expresarle su deseo de que
"el rey más grande de Europa" debería tener "el matemático más grande de Europa" viviendo en su corte.
Lagrange aceptó la oferta y durante los próximos veinte años en Prusia, no sólo produjo la serie más grande de documentos publicada en el Berlín sino que publicó su trabajo monumental, la Mécanique analytique.

Su estancia en Berlín comenzó con un desafortunado error: estando la mayoría de sus colegas casados, y aconsejado por sus esposas de que era la única manera de estar contento, se casó; su esposa se murió pronto, pero la unión no fue feliz.

Era el favorito del rey y frecuentemente disertó sobre las ventajas de una regularidad perfecta en la vida. La lección la aplicó a su vida, y Lagrange estudió su mente y su cuerpo como si fueran máquinas, y encontró experimentando la cantidad exacta de trabajo que podía hacer sin perder la salud. Todas las noches se ponía una tarea definida para el próximo día, y al completar cualquier tema escribía un corto análisis para ver qué puntos en las demostraciones eran susceptibles de mejora. Siempre pensó en sus artículos antes de componerlos, y normalmente los escribió con aseo y sin una sola raspadura o corrección.

Última etapa en Francia

En 1786 Federico II murió, y Lagrange que se había adaptado al clima de Berlín aceptó alegremente la oferta de Luis XVI para emigrar a París. Había recibido invitaciones similares de España y Nápoles. En Francia fue recibido con distinción, y se prepararon apartamentos especiales en el Louvre para su recepción.

Al principio de su residencia tuvo un ataque de melancolía, y tuvo una copia impresa de su Mécanique, en la que había trabajado un cuarto de siglo, sin abrir en su escritorio durante más de dos años. La curiosidad acerca de los resultados de la revolución francesa lo sacó de su letargo, una curiosidad que pronto se volvió en alarma con el desarrolló de la revolución.

En 1792, la inexplicable tristeza de su vida y su timidez movió la compasión de una joven muchacha que insistió en casarse siendo feliz con dicha unión. Aunque el decreto de octubre de 1793 que exigía que todos los extranjeros dejaran Francia no le fue aplicado, deseaba marcharse cuando le ofrecieron la presidencia de la comisión para la reforma de pesos y medidas. La opción de las unidades finalmente seleccionadas era principalmente debida a él, y por su influencia se aceptó por la comisión la subdivisión decimal 1799.

Aunque Lagrange había querido salir de Francia, nunca estuvo en peligro y los diferentes gobiernos revolucionarios (y más tarde, Napoleón) lo llenaron de honores y distinciones. En 1794 Lagrange fue nombrado profesor de École Polytechnique y las conferencias que dio allí a los matemáticos que tuvieron la buena suerte de poder asistir a ellas, tenían su base en su Théorie des fonctions analytiques.

En 1795 ocupó una silla matemática honorífica en la École normale que disfrutó sólo durante cuatro meses, ya que la école fue cerrada. Sus conferencias aquí eran bastante elementales, y no contiene nada de importancia especial.

En 1810 comenzó una revisión completa de la Mécanique analytique, pero sólo pudo completar unos dos tercios antes de su muerte que sucedió en 1813.

Muerte

Murió el 10 de abril de 1813, en París, Francia.

Su obra

Miscellanea Taurinensia

El primer volumen contiene un documento de la teoría de la propagación de sonido; indica un error hecho por Newton, y obtiene la ecuación diferencial general para el movimiento, y halla la solución para el movimiento en línea recta.

Este volumen también contiene la solución completa del problema de una cuerda que vibra transversalmente; en este trabajo señala la falta de generalidad en las soluciones dadas previamente por Brook Taylor, D'Alembert y Leonhard Euler llegando a la conclusión que la forma de la curva para un tiempo t cualquiera viene dada por la ecuación.

El artículo concluye con una hábil discusión sobre ecos y sonidos compuestos. Otros artículos en este volumen son serie recursivas, probabilidad y cálculo de variaciones.

El segundo volumen contiene un documento largo que incluye los resultados de varios documentos del primer volumen y notas sobre el cálculo de variaciones; e ilustra su uso deduciendo el principio de mínima acción, y las soluciones de varios problemas de dinámica.

El tercer volumen incluye la solución de varios problemas de dinámica mediante el cálculo de variaciones; algunos documentos de cálculo integral; una solución del problema de Fermat, encontrar un número x qué hará que (x ² n + 1) sea un cuadrado dónde n es un entero dado que no es un cuadrado; y las ecuaciones de diferencial generales del problema del movimiento de n-cuerpos y su aplicación al Problema de los tres cuerpos que se mueven bajo sus atracciones mutuas.

Los tratados

Su actividad mental durante estos veinte años en Prusia fue asombrosa, no sólo por el hecho de producir su espléndida Mécanique analytique, sino por contribuir, con doscientos trabajos, a las Academias de Berlín, Turín, y París. Algunos de éstos realmente son tratados, y todos, sin excepción, son de una extraordinaria calidad. Salvo un corto tiempo cuando él estaba enfermo en que produjo aproximadamente un artículo por término medio al mes. Los más importantes son:

  • Sus contribuciones a los volúmenes cuarto y quinto, 1766-1773, de la Miscellanea Taurinensia; el más importante fue uno en 1771 en que discutió cómo numerosas observaciones astronómicas deben combinarse para dar el resultado más probable.
  • Después, sus contribuciones a los primeros dos volúmenes, 1784-1785, de la Academia de Turín. Un artículo sobre la presión ejercida por los fluidos en movimiento, y el segundo un artículo en la integración de una serie infinita, y el tipo de problemas para que es conveniente.

La astronomía

El siguiente trabajo fue en 1764 sobre la libración de la Luna, y una explicación acerca de por qué siempre ofrece la misma cara a la Tierra, un problema que él trató con la ayuda del trabajo virtual. Su solución es especialmente interesante por contener el germen de la idea de ecuaciones generalizadas de movimiento, ecuaciones que demostró formalmente en 1780.

La mayoría de los trabajos enviados a París versaba sobre preguntas astronómicas, y entre estos papeles cabe mencionar el sistema joviano en 1766, su ensayo en el problema de los tres cuerpos en 1772, su trabajo sobre la ecuación secular de la Luna en 1773, y su tratado sobre las perturbaciones cometarias de 1778. Éstos eran todos asuntos propuestos por la Academia francesa, y en cada caso el premio se le otorgó a él.

Existen numerosos artículos de astronomía. De estos los más importantes son:

  • Intentando resolver el Problema de los tres cuerpos, descubrió los puntos de Lagrange en 1772 de interés porque en ellos se han encontrado los asteroides troyanos y satélites troyanos de Saturno.
  • Gravitación de elipsoides, 1773: Punto de partida del trabajo de Maclaurin.
  • La ecuación secular de la Luna, 1773; también notable por la introducción de la idea de potencial. El potencial de un cuerpo en un punto es la suma de la masa de cada elemento del cuerpo dividido por su distancia del punto. Lagrange mostró que si el potencial de un cuerpo a un punto externo fuera conocido, la atracción en cualquier dirección podría encontrarse en seguida. La teoría del potencial se elaboró en un artículo enviado a Berlín en 1777.
  • El movimiento de los nodos de la órbita de un planeta 1774.
  • La estabilidad de las órbitas planetarias, 1776.
  • Dos artículos sobre el método para determinar la órbita de un cometa con tres observaciones, en 1778 y 1783,: esto no se ha demostrado prácticamente disponible de hecho, pero su sistema de calcular las perturbaciones por medio de las cuadraturas mecánicas ha formado la base de la mayoría de las investigaciones subsecuentes en el asunto.
  • Su determinación de las variaciones seculares y periódicas de los elementos orbitales de los planetas, 1781-1784: los límites superiores asignados para que éstos están de acuerdo con aquéllos obtenidos después por Le Verrier, y Lagrange procedió hasta donde el conocimiento permitía entonces de las masas de los planetas.
  • A este tema volvió durante los últimos años de su vida cuando estaba ya en París. La teoría del movimiento planetario había formado parte de algunos de los más notable papeles de Berlín de Lagrange. En 1806 el asunto se volvió a abrir por parte de Poisson, quién, en un papel leído antes de la Academia francesa, mostró las fórmulas de Lagrange llevadas a ciertos límites para la estabilidad de las órbitas. Lagrange que estaba presente discutió ahora de nuevo el asunto entero, y en una carta comunicada a la Academia en 1808 explicó cómo, por la variación de constantes arbitrarias, las desigualdades periódicas y seculares de cualquier sistema de cuerpos mutuamente unidos por la gravitación podrían ser determinadas.

El álgebra

El mayor número de sus artículos de álgebra los envió a la Academia de Berlín. Cabe destacar:

  • Su discusión de la solución enteras de las formas cuadráticas, 1769, y generalmente de ecuaciones indeterminadas, 1770.
  • Su tratado de la teoría de eliminación de parámetros, 1770.
  • Sus papeles en el proceso general por resolver una ecuación algebraica de cualquier grado, 1770 y 1771; este método falla para las ecuaciones de un orden superior al cuarto, porque involucra la solución de una ecuación de orden superior, pero da todas las soluciones de sus predecesores.
  • La solución completa de una ecuación binomial de cualquier grado, esta ocupa el último lugar en los papeles mencionados.
  • Por último, en 1773, su tratamiento de determinantes de segundo y tercer orden, y de sus invariantes.

La teoría de números

Algunos de sus artículos iniciales también tratan de preguntas conectadas con el abandonado pero singularmente fascinante tema de la teoría de números. Entre éstos es lo siguiente:

  • Su prueba del teorema que cada entero positivo que no es un cuadrado puede expresarse como la suma de dos, tres o cuatro cuadrados de enteros, 1770.
  • Su prueba del teorema de Wilson que si n es un número primo, entonces ( n - 1)! + 1 siempre es un múltiplo de n , 1771.
  • Sus artículos de 1773, 1775, y 1777, qué da las demostraciones de varios resultados enunciadas por Fermat, y no demostrado previamente.
  • Y, por último, su método para determinar los factores de números de la forma x2 + ay2.

La matemática pura

Los intereses de Lagrange eran esencialmente aquéllos de un estudiante de matemática pura: buscó y obtuvo resultados abstractos de largo alcance, y estaba satisfecho de dejar las aplicaciones a otros. De hecho parte de los descubrimientos de su gran contemporáneo, Pierre-Simon Laplace, consiste en la aplicación de las fórmulas de Lagrange a los fenómenos de la naturaleza; por ejemplo, las conclusiones de Laplace de la velocidad del sonido y de la aceleración secular de la Luna están ya implícitamente en los resultados de Lagrange. La única dificultad para entender a Lagrange es el asunto de interés y la generalidad extrema de sus procesos; pero su análisis es tan lúcido y luminoso como es simétrico e ingenioso."

Un reciente escritor que habla de Lagrange dice el tomo un rol verdaderamente prominente en el avance de casi todas las ramas de la matemática pura. Como Diofanto y Fermat, él poseyó un genio especial para la teoría de números, y en este asunto dio soluciones de muchos de los problemas que se habían propuesto por Fermat, y agregó algunos teoremas propios. Creó el cálculo de variaciones. La teoría de ecuaciones diferenciales está en deuda con él por convertirla en una ciencia en lugar de una colección de ingeniosos artificios para la solución de problemas particulares.

Contribuyó al cálculo de diferencias finitas con la fórmula de interpolación que lleva su nombre. Sus tres trabajos sobre el método de interpolación de 1783, 1792 y 1793,: están ahora en la misma fase en que Lagrange los dejó.

Véase también


Fuente

biografiasyvidas, biografía de Lagrange