Gases de efecto invernadero
|
Gases de efecto invernadero . Es un gas atmosférico que absorbe y emite radiación dentro del rango infrarrojo. Este proceso es la fundamental causa del efecto invernadero.
Los principales GEI en la atmósfera terrestre son el vapor de agua, el dióxido de carbono, el metano, el óxido de nitrógeno y el ozono. Sin los gases de efecto invernadero la temperatura promedio de la superficie terrestre sería alrededor de −18 °C, en lugar de la media actual de 15 °C. En el sistema solar, las atmósferas de Venus, Marte y Titán también albergan gases que causan un efecto invernadero.
Sumario
Gases implicados
- Vapor de agua . Es un gas que se obtiene por evaporación o ebullición del agua líquida o por sublimación del hielo. Es el que más contribuye al efecto invernadero debido a la absorción de los rayos infrarrojos. Es inodoro e incoloro y, a pesar de lo que pueda parecer, las nubes o el vaho blanco de una cacerola o un congelador, vulgarmente llamado "vapor", no son vapor de agua sino el resultado de minúsculas gotas de agua líquida o cristales de hielo.
- Dióxido de carbono . Es un gas cuyas moléculas están compuestas por dos átomos de oxígeno y uno de carbono. Su fórmula química es CO2.
- Metano . El metano es el hidrocarburo alcano más sencillo, cuya fórmula química es CH4. Cada uno de los átomos de hidrógeno está unido al carbono por medio de un enlace covalente. Es una sustancia no polar que se presenta en forma de gas a temperaturas y presiones ordinarias. Es incoloro e inodoro y apenas soluble en agua en su fase líquida.
En la naturaleza se produce como producto final de la putrefacción anaeróbica de las plantas. Este proceso natural se puede aprovechar para producir biogás. Muchos microorganismos anaeróbicos lo generan utilizando el CO2 como aceptor final de electrones. Constituye hasta el 97 % del gas natural. En las minas de carbón se le llama grisú y es muy peligroso ya que es fácilmente inflamable y explosivo. El metano es un gas de efecto invernadero relativamente potente que podría contribuir al calentamiento global del planeta Tierra ya que tiene un potencial de calentamiento global de 23; pero que su concentración es bajísima. Esto significa que en una media de tiempo de 100 años cada Kg de CH4 calienta la Tierra 25 veces más que la misma masa de CO2, sin embargo hay aproximadamente 220 veces más dióxido de carbono en la atmósfera de la Tierra que metano por lo que el metano contribuye de manera menos importante al efecto invernadero.
- Óxidos de nitrógeno . El término óxidos de nitrógeno (NxOy) se aplica a varios compuestos químicos binarios gaseosos formados por la combinación de oxígeno y nitrógeno. El proceso de formación más habitual de estos compuestos inorgánicos es la combustión a altas temperaturas, proceso en el cual habitualmente el aire es el comburente.
- Ozono . Es una sustancia cuya molécula está compuesta por tres átomos de oxígeno, formada al disociarse los 2 átomos que componen el gas de oxígeno. Cada átomo de oxígeno liberado se une a otra molécula de oxígeno (O2), formando moléculas de Ozono (O3).
- Clorofluorocarbonos . Es cada uno de los derivados de los hidrocarburos saturados obtenidos mediante la sustitución de átomos de hidrógeno por átomos de flúor y/o cloro principalmente.
Debido a su alta estabilidad fisicoquímica y su nula toxicidad, han sido muy usados como gases refrigerantes, agentes extintores y propelentes para aerosoles. Fueron introducidos a principios de la década de los años 1930 por ingenieros de General Motors, para sustituir materiales peligrosos como el dióxido de azufre y el amoníaco.
Efecto invernadero
La atmósfera, por el hecho de ser muy transparente para la luz visible pero mucho menos para la radiación infrarroja, produce para la superficie terrestre el mismo efecto que el techo de cristal produce en un invernadero; la luz solar, que llega sin grandes obstáculos hasta el suelo, lo calienta, dando lugar a que emita rayos infrarrojos (ondas caloríficas), los cuales, a diferencia de los rayos de luz, son absorbidos en gran parte por el vidrio o la atmósfera. Al final la cantidad de energía emitida al espacio tiene que ser la misma que la absorbida, pero la superficie terrestre tiene que alcanzar la temperatura en que ambos flujos se equilibran, la cual es más alta en presencia de una atmósfera (en un planeta) o de techos de cristal (en un invernadero; aunque en realidad el cristal de un invernadero protege de la pérdida de calor más porque interrumpe la circulación del aire, que porque sea opaco a los rayos infrarrojos).
Es importante señalar que el efecto invernadero afecta a todos los cuerpos planetarios del sistema solar dotados de atmósfera, porque aunque no todos los gases absorben radiación infrarroja, en ninguna de esas atmósferas faltan los que sí lo hacen. En la Tierra el efecto invernadero es responsable de un exceso de 33 °C de la temperatura superficial (15 °C de valor medio) sobre la temperatura de emisión (−18 °C), pero en Marte la diferencia es de tan solo 3 °C y en Venus la diferencia alcanza los 466 °C.
El efecto invernadero es un fenómeno natural, pero la alusión frecuente a él en relación con el calentamiento global hace creer a algunos que es en sí indeseable, y una consecuencia reciente de la contaminación atmosférica. Hay que aclarar que el calentamiento no es atribuido a la simple existencia, sino al aumento del efecto invernadero por encima de sus valores naturales por acción del hombre.
No todos los componentes de la atmósfera contribuyen al efecto invernadero. Los gases de invernadero absorben los fotones infrarrojos emitidos por el suelo calentado por el sol. La energía de esos fotones no basta para causar reacciones químicas —para romper enlaces covalentes— sino que simplemente aumenta la energía de rotación y de vibración de las moléculas implicadas. El exceso de energía es a continuación transferido a otras moléculas, por las colisiones moleculares, en forma de energía cinética, es decir, de calor; aumentando la temperatura del aire. De la misma forma, la atmósfera se enfría emitiendo energía infrarroja cuando se producen las correspondientes transiciones de estado vibracional y rotacional en las moléculas hacia niveles menores de energía. Todas esas transiciones requieren cambios en el momento dipolar de las moléculas (es decir, modificaciones de la separación de cargas eléctricas en sus enlaces polares) lo que deja fuera de este papel a los dos gases principales en la composición del aire, nitrógeno (N2) y oxígeno (O2), cuyas moléculas, por estar formadas por dos átomos iguales, carecen de cualquier momento dipolar.
Si bien todos ellos —salvo los compuestos del flúor— son naturales, en tanto que existen en la atmósfera desde antes de la aparición de los seres humanos, a partir de la Revolución industrial de mediados del siglo XIX, y debido principalmente al uso intensivo de combustibles fósiles en las actividades industriales, la ganadería y el transporte, se han producido sensibles incrementos en las cantidades de óxidos de nitrógeno y dióxido de carbono emitidas a la atmósfera. Se estima que también el metano y el óxido nitroso están aumentando su presencia por razones antropogénicas (debidas a la actividad humana, en mayor parte la ganadería y la agricultura ganadera). Además, a este incremento de emisiones se suman otros problemas, como la deforestación, que han reducido la cantidad de dióxido de carbono retenida en materia orgánica, contribuyendo así indirectamente al aumento antropogénico del efecto invernadero. Asimismo, el excesivo dióxido de carbono está acidificando los océanos y reduciendo el fitoplancton.
Emisiones antropogénicas de gases de efecto invernadero de larga permanencia
Las actividades humanas generan emisiones de cuatro GEI de larga permanencia: CO2, metano (CH4), óxido nitroso (N2O) y halocarbonos (gases que contienen flúor, cloro o bromo). Cada GEI tiene una influencia térmica (forzamiento radiactivo) distinta sobre el sistema climático mundial por sus diferentes propiedades radiactivas y períodos de permanencia en la atmósfera. Tales influencias se homogenizan en una métrica común tomando como base el forzamiento radiactivo por CO2 (emisiones de CO2-equivalente). Homogenizados todos los valores, el CO2 es con mucha diferencia el gas invernadero antropógeno de larga permanencia más importante, representando en 2004 el 77% de las emisiones totales de GEI antropógenos. Pero el problema no solo es la magnitud sino también las tasas de crecimiento.
Entre 1970 y 2004, las emisiones anuales de CO2 aumentaron un 80%. Además en los últimos años el incremento anual se ha disparado: en el reciente periodo 1995-2004, la tasa de crecimiento de las emisiones de CO2-eq fue de (0,92 GtCO2-eq anuales), más del doble del periodo anterior 1970-1994 (0,43 GtCO2-eq anuales).
Ya se ha señalado que la concentración de CO2 en la atmósfera ha pasado de un valor de 280 ppm en la época preindustrial a 379 ppm en 2005. El CH4 en la atmósfera ha cambiado de los 715 ppmm en 1750 (periodo preindustrial) hasta 1732 ppmm en 1990, alcanzando en 2005 las 1774 ppmm. La concentración mundial de N2O en la atmósfera pasó de 270 ppmm en 1750 a 319 ppmm en 2005. Los halocarbonos prácticamente no existían en la época preindustrial y las concentraciones actuales se deben a la actividad humana.
Según el Informe Stern que estudió el impacto del cambio climático y el calentamiento global en la economía mundial, encargado por el gobierno británico y publicado en 2006, la distribución total mundial de las emisiones de GEI por sectores es: un 24% se debe a la generación de electricidad, un 14% a la industria, un 14% al transporte, un 8% a los edificios y un 5% más a actividades relacionadas con la energía. Todo ello supone unas 2/3 partes del total y corresponde a las emisiones motivadas por el uso de la energía. Aproximadamente el 1/3 restante se distribuye de la siguiente forma: un 18% por el uso del suelo (incluye la deforestación), un 14% por la agricultura y un 3% por los residuos.
Entre 1970 y 2004, las mejoras tecnológicas han frenado las emisiones de CO2 por unidad de energía suministrada. Sin embargo el crecimiento mundial de los ingresos (77%) y el crecimiento mundial de la población (69%), han originado nuevas formas de consumo y un incremento de consumidores de energía. Esta es la causa del aumento de las emisiones de CO2 en el sector de la energía.
También el Informe Stern señala que desde el año 1.850, Estados Unidos y Europa han generado el 70% de la emisiones totales de CO2.
Bibliografías
- IPCC-Intergovernmental Panel on Climate Change (2008). Cambio climático: informe de síntesis 2007. Contribución de los grupos de trabajo I, II y III al cuarto informe de evaluación del grupo intergubernamental de expertos sobre el cambio climático. Resumen para responsables de políticas. Core Writing Team, Pachauri, R.K, y Reisinger, A. OMM-PNUMA. Suecia. p 115.
- SEMARNAT – PNUMA (2006). Secretaría de Medio Ambiente y Recursos Naturales - Programa de las Naciones Unidas para el Medio Ambiente/SEMARNAT - PNUMA (2006). El cambio climático en América Latina y el Caribe. México. 150 p.
- Barros Vicente. El cambio climático global.1ª Edición. Buenos Aires. Libros del Zorzal, 2004.
- Llebot, J. E “El cambio climático” Cuadernos de medio ambiente .Rules. Año 1998.
- Camps M, Pinto M. 2004. Los sumideros de carbono en el marco del Protocolo de Kioto. Edafología. 11(1):27-36.
- ACOT, Pascal. Historia del clima: desde el Big Bang a las catástrofes climáticas. 1a. ed. Buenos Aires: El Ateneo, 2005.
- Enger, E. & Smith, B., 2006, Ciencia ambiental: Un estudio de interrelaciones, Editorial McGraw-Hill/Interamericana Editores, México.
- Comisión Económica Para América Latina y el Caribe (CEPAL). Cambio climático y desarrollo en América Latina y el Caribe: una reseña (2009).
- Schneider, H. y J.L. Samaniego. La huella del carbono en la producción, distribución y consumo de bienes y servicios, documentos de proyectos, N° 298, Santiago de Chile, Comisión Económica para América Latina y el Caribe (2009).
- Alenza García, José Francisco. 2007. Cambio climático y energías renovables. Madrid: Civitas Ediciones.
- Flannery, Tim. 2005. La amenaza del cambio climático: historia y futuro. Madrid: Taurus.
- Isaza, José Fernando y Diógenes Campos Romero. 2007. Cambio climático: glaciaciones y calentamiento global. Bogotá: Universidad de Bogotá Jorge Tadeo Lozano
Fuentes
- Instituto de Hidrología, Meteorología y Estudios Ambientales – Colombia
- Agencia de Protección Ambiental de Estados Unidos
- Fundación Aquae
- OCEANA – Protegiendo los Océanos del Mundo
- Instituto de Meteorología de la República de Cuba
- Centro Científico Tecnológico (CCT) CONICET Mendoza – Argentina
- Grupo Intergubernamental de Expertos sobre el Cambio Climático
- Organización Meteorológica Mundial
- SciELO Venezuela