Saltar a: navegación, buscar

Disco duro

Disco duro
Información sobre la plantilla
Disco-duro.jpg
Dispositivo que conserva información.
Disco duro o disco rígido (en inglés hard disk drive) es un dispositivo de almacenamiento el cual, para almacenar los datos o los programas, utiliza un conjunto de discos rotatorios con un recubrimiento magnético, llamados platos [platters]. En el uso cotidiano, los términos disco duro, unidad de disco duro y unidad dura [hard disk, hard disk drive y hard drive] son intercambiables, debido a que el disco y el mecanismo de la unidad conforman una misma entidad.

Un típico plato de disco duro [hard disk platter] gira a una velocidad de hasta 3600 rpm, y los cabezales de lectura/grabación [read/write heads] flotan sobre un colchón de aire con un espesor de 10 a 25 millonésimas de pulgada, de modo que nunca entran en contacto con la superficie de grabación. Para impedir que los contaminantes aerotransportados se introduzcan en ella e interfieran con estas tolerancias, toda la unidad de disco duro [hard disk drive] está herméticamente sellada.

Los discos duros [hard disks] varían en capacidad desde unas pocas decenas de Megabytes a grandes cantidades de Gigabytes de espacio de almacenamiento [storage space]. Además, mientras más grande sea el disco más importante será la estrategia que usted use para realizar las copias de respaldo (o de seguridad) [backup]. Los discos duros son dignos de toda confianza, sin embargo fallan, por lo general, en el momento más inoportuno. Estos son dispositivo no volátil, que conserva la información aun con la pérdida de energía, que emplea un sistema de Grabación magnética digital.Hay distintos estándares para comunicar un disco duro con la computadora; las interfaces más comunes son Integrated Drive Electronics (IDE, también llamado ATA) , SCSI generalmente usado en servidores, SATA, este último estandarizado en el año 2004 y FC exclusivo para servidores.

Tal y como sale de fábrica, el disco duro no puede ser utilizado por un sistema operativo. Antes se deben definir en él un Formato de bajo nivel, una o más particiones y luego hemos de darles un formato que pueda ser entendido por nuestro sistema.

También existe otro tipo de discos denominados de Estado sólido que utilizan cierto tipo de memorias construidas con Semiconductores para almacenar la información. El uso de esta clase de discos generalmente se limitaba a las Supercomputadoras, por su elevado precio, aunque hoy en día ya se puede encontrar en el mercado unidades mucho más económicas de baja capacidad (hasta 512 GB) para el uso en computadoras personales (sobre todo portátiles). Así, el Caché de pista es una memoria de estado sólido, tipo Memoria RAM, dentro de un disco duro de estado sólido.

Su traducción del inglés es unidad de disco duro, pero este término es raramente utilizado, debido a la practicidad del término de menor extensión disco duro (o disco rígido).

Estructura física

Dentro de un disco duro hay uno o varios platos (entre 2 y 4 normalmente, aunque hay hasta de 6 ó 7 platos), que son discos (de aluminio o cristal) concéntricos y que giran todos a la vez. El cabezal (dispositivo de lectura y escritura) es un conjunto de brazos alineados verticalmente que se mueven hacia dentro o fuera según convenga, todos a la vez. En la punta de dichos brazos están las cabezas de lectura/escritura, que gracias al movimiento del cabezal pueden leer tanto zonas interiores como exteriores del disco.

Cada plato tiene dos caras, y es necesaria una cabeza de lectura/escritura para cada cara (no es una cabeza por plato, sino una por cara). Si se mira el esquema Cilindro-Cabeza-Sector (más abajo), a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada uno de los brazos es doble, y contiene 2 cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay 8 cabezas para leer 4 platos, aunque por cuestiones comerciales, no siempre se usan todas las caras de los discos y existen discos duros con un número impar de cabezas, o con cabezas deshabilitadas. Las cabezas de lectura/escritura nunca tocan el disco, sino que pasan muy cerca (hasta a 3 Nanómetros) ó 3 millonésimas de milímetro, debido a una finísima película de aire que se forma entre éstas y los platos cuando éstos giran (algunos discos incluyen un sistema que impide que los cabezales pasen por encima de los platos hasta que alcancen una velocidad de giro que garantice la formación de esta película). Si alguna de las cabezas llega a tocar una superficie de un plato, causaría muchos daños en él, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7.200 Revoluciones por minuto se mueve a 129 Km/h en el borde de un disco de 3,5 pulgadas).

Direccionamiento

 Hay varios conceptos para referirse a zonas del disco:

  • Plato: cada uno de los discos que hay dentro del disco duro.
  • Cara: cada uno de los dos lados de un plato.
  • Cabeza: número de cabezales.
  • Pista: una circunferencia dentro de una cara; la pista 0 está en el borde exterior.
  • Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
  • Sector : cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes. Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología ZBR (grabación de bits por zonas) que aumenta el número de sectores en las pistas exteriores, y usa más eficientemente el disco duro.

El primer sistema de direccionamiento que se usó fue el CHS (cilindro-cabeza-sector), ya que con estos tres valores se puede situar un dato cualquiera del disco. Más adelante se creó otro sistema más sencillo: LBA (direccionamiento lógico de bloques), que consiste en dividir el disco entero en sectores y asignar a cada uno un único número. Éste es el que actualmente se usa.

Tipos de conexión

Si hablamos de disco rígido podemos citar a los distintos tipos de conexión que poseen los mismos con la placa madre, es decir pueden ser SATA, IDE, SCSI o SAS.

  • IDE: Integrated Device Electronics ("Dispositivo con electrónica integrada") o ATA (Advanced Technology Attachment), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advanced Technology Attachment Packet Interface) Hasta hace poco, el estándar principal por su versatilidad y relación calidad/precio.
  • SCSI: Son discos duros de gran capacidad de almacenamiento . Se presentan bajo tres especificaciones: SCSI Estándar (Standard SCSI), SCSI Rápido (Fast SCSI) y SCSI Ancho-Rápido (Fast-Wide SCSI). Su tiempo medio de acceso puede llegar a 7 mseg y su velocidad de transmisión secuencial de información puede alcanzar teóricamente los 5 Mbps en los discos SCSI Estándares, los 10 Mbps en los discos SCSI Rápidos y los 20 Mbps en los discos SCSI Anchos-Rápidos (SCSI-2). Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (daisy-chain). A diferencia de los discos IDE, pueden trabajar asincrónicamente con relación al microprocesador, lo que los vuelve más rápidos.
  • SATA (Serial ATA): Nuevo estándar de conexión que utiliza un bus serie para la transmisión de datos. Notablemente más rápido y eficiente que IDE. En la actualidad hay dos versiones, SATA 1 de hasta 1,5 Gigabits por segundo (192 MB/s) y SATA 2 de hasta 3,0 Gb/s (384 MB/s) de velocidad de transferencia.
  • SAS (Serial Attached SCSI): Interfaz de transferencia de datos en serie, sucesor del SCSI paralelo, aunque sigue utilizando comandos SCSI para interaccionar con los dispositivos SAS. Aumenta la velocidad y permite la conexión y desconexión de forma rápida. Una de las principales características es que aumenta la velocidad de transferencia al aumentar el número de dispositivos conectados, es decir, puede gestionar una tasa de transferencia constante para cada dispositivo conectado, además de terminar con la limitación de 16 dispositivos existente en SCSI, es por ello que se vaticina que la tecnología SAS irá reemplazando a su predecesora SCSI. Además, el conector es el mismo que en la interfaz SATA y permite utilizar estos discos duros, para aplicaciones con menos necesidad de velocidad, ahorrando costos. Por lo tanto, los discos SATA pueden ser utilizados por controladoras SAS pero no a la inversa, una controladora SATA no reconoce discos SAS.

Factor de forma

El más temprano "factor de forma" de los discos duros, heredó sus dimensiones de las disqueteras. Pueden ser montados en los mismos chasis y así los discos duros con factor de forma, pasaron a llamarse coloquialmente tipos FDD "floppy-disk drives" (en inglés).

La compatibilidad del "factor de forma" continua siendo de 3½ pulgadas (8,89 cm) incluso después de haber sacado otros tipos de disquetes con unas dimensiones más pequeñas.

  • 8 pulgadas: 241,3×117,5×362 mm (9,5×4,624×14,25 pulgadas).
    En 1979, Shugart Associates sacó el primer factor de forma compatible con los disco duros, SA1000, teniendo las mismas dimensiones y siendo compatible con la interfaz de 8 pulgadas de las disqueteras. Había dos versiones disponibles, la de la misma altura y la de la mitad (58,7mm).
  • 5,25 pulgadas: 146,1×41,4×203 mm (5,75×1,63×8 pulgadas). Este factor de forma es el primero usado por los discos duros de Seagate en 1980 con el mismo tamaño y altura máxima de los FDD de 5¼ pulgadas, por ejemplo: 82,5 mm máximo.
    Éste es dos veces tan alto como el factor de 8 pulgadas, que comúnmente se usa hoy; por ejemplo: 41,4 mm (1,64 pulgadas). La mayoría de los modelos de unidades ópticas (DVD/CD) de 120 mm usan el tamaño del factor de forma de media altura de 5¼, pero también para discos duros. El modelo Quantum Bigfoot es el último que se usó a finales de los 90'.
  • 3,5 pulgadas: 101,6×25,4×146 mm (4×1×5.75 pulgadas).
    Este factor de forma es el primero usado por los discos duros de Rodine que tienen el mismo tamaño que las disqueteras de 3½, 41,4 mm de altura. Hoy ha sido en gran parte remplazado por la línea "slim" de 25,4mm (1 pulgada), o "low-profile" que es usado en la mayoría de los discos duros.
  • 2,5 pulgadas: 69,85×9,5-15×100 mm (2,75×0,374-0,59×3,945 pulgadas).
    Este factor de forma se introdujo por PrairieTek en 1988 y no se corresponde con el tamaño de las lectoras de disquete. Este es frecuentemente usado por los discos duros de los equipos móviles (portátiles, reproductores de música, etc...) y en 2008 fue reemplazado por unidades de 3,5 pulgadas de la clase multiplataforma. Hoy en día la dominante de este factor de forma son las unidades para portátiles de 9,5 mm, pero las unidades de mayor capacidad tienen una altura de 12,5 mm.
  • 1,8 pulgadas: 54×8×71 mm.
    Este factor de forma se introdujo por Integral Peripherals en 1993 y se involucró con ATA-7 LIF con las dimensiones indicadas y su uso se incrementa en reproductores de audio digital y su subnotebook. La variante original posee de 2GB a 5GB y cabe en una ranura de expansión de tarjeta de ordenador personal. Son usados normalmente en iPods y discos duros basados en MP3.
  • 1 pulgadas: 42,8×5×36,4 mm.
    Este factor de forma se introdujo en 1999 por IBM y Microdrive, apto para los slots tipo 2 de compact flash, Samsung llama al mismo factor como 1,3 pulgadas.
  • 0,85 pulgadas: 24×5×32 mm.
    Toshiba anunció este factor de forma el 8 de enero de 2004 para usarse en móviles y aplicaciones similares, incluyendo SD/MMC slot compatible con disco duro optimizado para vídeo y almacenamiento para micro-móviles de 4G. Toshiba actualmente vende versiones de 4GB (MK4001MTD) y 8GB (MK8003MTD) y 5 GB tienen el Récord Guinness del disco duro más pequeño.

Los principales fabricantes suspendieron la investigación de nuevos productos para 1 pulgada (1,3 pulgadas) y 0,85 pulgadas en 2007, debido a la caída de precios de las memorias flash, aunque Samsung introdujo en el 2008 con el SpidPoint A1 otra unidad de 1,3 pulgadas.

El nombre de "pulgada" para los factores de forma normalmente no identifica ningún producto actual (son especificadas en milímetros para los factores de forma más recientes), pero estos indican el tamaño relativo del disco, para interés de la continuidad histórica.

Estructura lógica

Dentro del disco se encuentran:

Integridad

Debido al extremadamente cerrado espacio entre los cabezales y la superficie del disco, alguna contaminación de los cabezales de lectura/escritura o las fuentes puede dar lugar a un accidente en los cabezales, un fallo del disco en el que el cabezal raya la superficie de la fuente, a menudo moliendo la fina película magnética y causando la pérdida de datos. Estos accidentes pueden ser causados por un fallo electrónico, un repentino corte en el suministro eléctrico, golpes físicos, el desgaste, la Corrosión o debido a que los cabezales o las fuentes sean de pobre fabricación.

El eje del sistema del disco duro depende de la presión del aire dentro del recinto para sostener los cabezales y su correcta altura mientras el disco gira. Un disco duro requiere una cierta línea de presiones de aire para funcionar correctamente. La conexión al entorno exterior y la presión se produce a través de un pequeño agujero en el recinto (cerca de 0,5 mm de diámetro) normalmente con un filtro en su interior (filtro de respiración, ver abajo). Si la presión del aire es demasiado baja, entonces no hay suficiente impulso para el cabezal, que se acerca demasiado al disco, y se da el riesgo de fallos y pérdidas de datos. Los discos fabricados especialmente son necesarios para operaciones de gran altitud, sobre 3.000 m (10.000 pies). A tener en cuenta que los aviones modernos tienen una cabina presurizada cuya altitud de presión no excede normalmente los 2.600 m (8.500 pies). Por lo tanto los discos duros ordinarios pueden ser usados de manera segura en los vuelos. Los discos modernos incluyen sensores de temperatura y se ajustan a las condiciones del entorno. Los agujeros de ventilación se pueden ver en todos los discos (normalmente tienen una pegatina a su lado que advierte al usuario de no cubrir el agujero. El aire dentro del disco operativo está en constante movimiento siendo barrido por la Fricción del plato. Este aire pasa a través de un filtro de recirculación interna para quitar algún contaminante que se hubiera quedado de su fabricación, alguna partícula o componente químico que de alguna forma hubiera entrado en el recinto, y cualquier partícula generada en una operación normal. Una Humedad muy alta durante un periodo largo puede corroer los cabezales y los platos.

Para los cabezales resistentes al magnetismo grandes (GMR) en particular, un incidente minoritario debido a la contaminación (que no se disipa la superficie magnética del disco) llega a dar lugar a un sobrecalentamiento temporal en el cabezal, debido a la fricción con la superficie del disco, y puede hacer que los datos no se puedan leer durante un periodo corto de tiempo hasta que la temperatura del cabezal se estabilice (también conocido como “aspereza térmica”, un problema que en parte puede ser tratado con el filtro electrónico apropiado de la señal de lectura).

Los componentes electrónicos del disco duro controlan el movimiento del accionador y la rotación del disco, y realiza lecturas y escrituras necesitadas por el controlador de disco. El Firmware de los discos modernos es capaz de programar lecturas y escrituras de forma eficiente en la superficie de los discos y de reasignar sectores que hayan fallado.

Funcionamiento mecánico

Un disco duro suele tener:

  • Platos en donde se graban los datos.
  • Cabezal de lectura/escritura.
  • Motor que hace girar los platos.
  • Electroimán que mueve el cabezal.
  • Circuito electrónico de control, que incluye: interfaz con la computadora, Memoria caché.
  • Bolsita desecante (Gel de sílice) para evitar la humedad.
  • Caja, que ha de proteger de la suciedad, motivo por el cual suele traer algún filtro de aire. Los discos duros no están sellados al vacío en sus cajas como a menudo se piensa; de hecho, muchos discos tienen un sistema mecánico que no deja salir a los cabezales a la superficie de los platos si éstos no tienen una velocidad de giro adecuada , y este sistema consiste en una pestaña que es empujada por el aire del interior de la caja del disco cuando éste se mueve a suficiente velocidad. Al ser empujada la pestañita, se desbloquean los cabezales.
  • Tornillos, a menudo tipo Torx.

Historia

A principios los discos duros eran extraíbles, sin embargo, hoy en día típicamente vienen todos sellados (a excepción, de un hueco de ventilación para filtrar e igualar la presión del aire).

El primer disco duro, aparecido en 1956, fue el IBM 350 modelo 1, presentado con la computadora Ramac I: pesaba una tonelada y su capacidad era de 5 MB. Más grande que una nevera actual, este disco duro trabajaba todavía con válvulas al vacío y requería una consola separada para su manejo.

Su gran mérito consistía en el que el tiempo requerido para el acceso era relativamente constante entre algunas posiciones de memoria, a diferencia de las cintas magnéticas, donde para encontrar una información dada, era necesario enrollar y desenrollar los carretes hasta encontrar el dato buscado, teniendo muy diferentes tiempos de acceso para cada posición.

La tecnología inicial aplicada a los discos duros era relativamente simple. Consistía en recubrir con material magnético un disco de metal que era formateado en pistas concéntricas, que luego eran divididas en sectores. El cabezal magnético codificaba información al magnetizar diminutas secciones del disco duro, empleando un código binario de «ceros» y «unos». Los bits o dígitos binarios así grabados pueden permanecer intactos años. Originalmente, cada bit tenía una disposición horizontal en la superficie magnética del disco, pero luego se descubrió cómo registrar la información de una manera más compacta.

El mérito del francés Albert Fert y al alemán Peter Grünberg (ambos Premio Nobel de Física, por sus contribuciones en el campo del almacenamiento magnético) fue el descubrimiento del fenómeno conocido como magnetorresistencia gigante, permitió construir cabezales de lectura y grabación más sensibles, y compactar más los bits en la superficie del disco duro. De estos descubrimientos, realizados en forma independiente por estos investigadores, se desprendió un crecimiento espectacular en la capacidad de almacenamiento en los discos duros, que se elevó un 60% anual en la década de 1990.

En 1992, los discos duros de 3,5 pulgadas alojaban 250 MB, mientras que 10 años después habían superado los 40.960 MB o 40 gigabytes (GB). En la actualidad, ya contamos en el uso cotidiano con discos duros de más de un terabyte (TB) o 1.048.576 megabytes.

En 2005 los primeros teléfonos móviles que incluían discos duros fueron presentados por Samsung y Nokia.

Características de un disco duro

Las características que se deben tener en cuenta en un disco duro son:

  • Tiempo medio de acceso: Tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista), tiempo de lectura/escritura y la Latencia media (situarse en el sector).
  • Tiempo medio de búsqueda: Tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco.
  • Tiempo de lectura/escritura: Tiempo medio que tarda el disco en leer o escribir nueva información, el tiempo depende de la cantidad de información que se quiere leer o escribir, el tamaño de bloque, el número de cabezales, el tiempo por vuelta y la cantidad de sectores por pista.
  • Latencia media: Tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco.
  • Velocidad de rotación: Revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media.
  • Tasa de transferencia: Velocidad a la que puede transferir la información a la computadora una vez la aguja está situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico.

Otras características son:

  • Caché de pista: Es una memoria tipo RAM dentro del disco duro. Los discos duros de estado sólido utilizan cierto tipo de memorias construidas con Semiconductores para almacenar la información. El uso de esta clase de discos generalmente se limita a las Supercomputadoras, por su elevado precio.
  • Interfaz: Medio de comunicación entre el disco duro y la computadora. Puede ser IDE/ATA, SCSI, SATA, USB, Firewire, SAS
  • Landz: Zona sobre las que aterrizan las cabezas una vez apagada la computadora.

Presente y futuro

Actualmente la nueva generación de discos duros utilizan la tecnología de Grabación perpendicular (PMR), la cual permite mayor densidad de almacenamiento. También existen discos llamados "Ecológicos" (GP - Green Power), los cuales hacen un uso más eficiente de la energía. Se está empezando a observar que la Unidad de estado sólido es posible que termine sustituyendo al disco duro a largo plazo. También hay que añadir los nuevos discos duros basados en el tipo de memorias Flash, que algunas empresas, como ASUS, incorporó recientemente en sus modelos. Los mismos arrancan en 4 GB a 512 GB.

Son muy rápidos ya que no tienen partes móviles y consumen menos energía. Todos esto les hace muy fiables y casi indestructibles. Un nuevo formato de discos duros basados en tarjetas de memorias. Sin embargo su costo por GB es aún muy elevado ya que el coste de un disco duro común de 500 GB es equivalente a un SSD de 8 a 16 GB, $50 USD aproximadamente.

Fabricantes

Los recursos tecnológicos y el saber hacer requeridos para el desarrollo y la producción de discos modernos implica que desde 2007, más del 98% de los discos duros del mundo son fabricados por un conjunto de grandes empresas: Seagate (que ahora es propietaria de Maxtor), Western Digital, Samsung e Hitachi (que es propietaria de la antigua división de fabricación de discos de IBM). Fujitsu sigue haciendo Discos portátiles y discos de servidores, pero dejó de hacer discos para ordenadores de escritorio en 2001, y el resto lo vendió a Western Digital. Toshiba es uno de los principales fabricantes de discos duros para portátiles de 2,5 pulgadas y 1,8 pulgadas. ExcelStor es un pequeño fabricante de discos duros.

Decenas de ex-fabricantes de discos duros han terminado con sus empresas fusionadas o han cerrado sus divisiones de discos duros, a medida que la capacidad de los dispositivos y la demanda de los productos aumentó, los beneficios eran menores y el mercado sufrió un significativa consolidación a finales de los 80 y finales de los 90. La primera víctima en el mercado de los PC fue Computer Memories Inc. o CMI; después de un incidente con 20 MB defectuoso en discos en 1985, La reputación de CMI nunca se recuperó, y salieron del mercado de los discos duros en 1987. Otro notable fallo fue de MiniScribe, quien quebró en 1990 después se descubrió que tenían en marcha un fraude e inflaban el número de ventas durante varios años. Otras muchas pequeñas compañías (como Kalok, Microscience, LaPine, Areal, Priam y PrairieTek) tampoco sobrevivieron a la expulsión, y habían desaparecido para 1993; Micropolis fue capaz de aguantar hasta 1997, y JTS, un recién llegado a escena, duro solo unos años y desapareció para 1999, después intentó fabricar discos duros en India. Su vuelta a la fama fue con la creación de un nuevo formato de tamaño de 3” para portátiles. Quantum and Integral también investigaron el formato de 3”, pero finalmente se dieron por vencidos. Rodime fue también un importante fabricante durante la década de los 80, pero dejó de hacer discos en la década de los 90 en medio de la reestructuración y ahora se concentra en la tecnología de la concesión de licencias; tienen varias patentes relacionadas con el formato de 3.5“.

  • 1988: Tandon Corporation vendió su división de fabricación de discos duros a Western Digital (WDC),el cual era un renombrado diseñador de controladores.
  • 1989: Seagate Technology compro el negocio de discos de alta calidad de Control Data, como parte del abandono de CDC en la creación de hardware.
  • 1990: Maxtor compro MiniScribe que estaba en bancarrota, haciéndolo el núcleo de su división de discos de gama baja.
  • 1994: Quantum compro la división de almacenamiento de [Digital Equipment Corporation|DEC]] otorgando al usuario una gama de discos de alta calidad llamada ProDrive , igual que la gama tape drive de DLT
  • 1995: Conner Peripherals fue fundada por uno de los cofundadores de Seagate Technology's junto con personal de MiniScribe, anunciaron un fusión con Seagate, la cual se completó a principios de 1996.
  • 1996: JTS se fusionó con Atari, permitiendo a JTS llevar a producción su gama de discos. Atari fue vendida a Hasbro en 1998, mientras que JTS sufrió una bancarrota en 1999.
  • 2000: Quantum vendió su división de discos a Maxtor para concentrarse en los unidades de cintas y los equipos de respaldo.
  • 2003: Siguiendo la controversia en los fallos masivos en su modelo Deskstar 75GXP , pioneer IBM vendió la mayor parte de su división de discos a Hitachi, renombrándole como Hitachi Global Storage Technologies (HGST).
  • 2003: Western Digital compro Read-Rite Corp, quien producía los cabezales utilizados en los discos duros, por 95.4 millones de $ en metálico.
    • 21 de diciembre de 2005: Seagate y Maxtor anuncian un acuerdo bajo el que Seagate adquiriría todo el stock de Maxtor por ciento noventa mil millones de $. Esta adquisición fue aprobada por los cuerpos regulatorios, y cerrada el 19 de mayo de 2006.
  • 2007
    • Julio:Western Digital (WDC) adquiere Komag U.S.A, un fabricante del material que recubre los platos de los discos duros, por ciento noventa mil millones de $.

¿Cómo monitorear el funcionamiento del disco duro?

El hecho es que todos los discos duros van a fallar, puede tomar un mes o años pero llegará un momento en el que no funcionará más y es aquí cuando es más importante hacer un respaldo para prevenir que se pierdan los datos que tienes.En algunos casos habrán signos que dirán que el disco duro está a punto de dañarse, pero en otros será algo sorpresivo.

Síntomas de que el disco duro esta dañado

Si no se tiene un software que detecte defectos, hay algunos síntomas que podrían indicar que el disco duro está por dañarse. Esto no dirá en cuánto tiempo dejará de funcionar y en algunos casos estos signos ni siquiera aparecerán. Sin embargo, se debe estar pendiente de estos.

  • Se cuelga o falla frecuentemente y de forma irregular, especialmente cuando se está iniciando el Sistema Operativo
  • Aparecen errores crípticos, extraños y frecuentes cuando se hacen cosas normales, como copiar un archivo de un lado a otro.
  • Nombres de archivos y carpetas que se han cambiado completamente sin permiso.
  • Desaparecen archivos.
  • Esperas demasiado largas para entrar a visitar una carpeta o para abrir un archivo.
  • Archivos ilegibles cuando se abren archivos o se mandan a imprimir.
  • Se escuchan sonidos de trabajo pesado en el disco duro.

Este último síntoma es muy importante porque suele ser un indicador llamativo, especialmente porque los discos duros modernos normalmente son más silenciosos. Si se escucha que algo ha cambiado en el sonido que hace mientras trabaja, entonces es posible que haya un problema.

¿Qué hacer cuando aparecen estos síntomas?

Si cualquiera de estos síntomas aparece, es ideal revisar el disco duro de inmediato para asegurarse de que sí hay un problema. Esto se puede hacer rápidamente con algún software especializado. Una ventaja es que los discos duros modernos usan algo llamado SMART, que son las siglas de "Self Monitoring Analysis and Reporting Technology" y que ayudaran a detectar y a mostrar fallas en su funcionamiento. Existen aplicaciones que leen los datos SMART y los traducen para que sean entendidos por cualquier persona. Una vez que se informe cuál es el problema o si existe uno, entonces se recomienda hacer un respaldo de inmediato a un disco externo. Esta práctica debe ser hecha siempre como medida de precaución.

¿Qué programa se puede usar para interpretar datos SMART?

Existen muchas aplicaciones que permiten hacer un análisis del disco duro para descubrir qué problemas tiene; por ejemplo, HDDscan. Otro recomendado es HDDExpert, una aplicación completamente gratuita que revisará el disco así sea un HDD o un SSD para averiguar qué tal está su funcionando y su salud en general. Lo mejor que ofrece este programa es la traducción de toda la información SMART para saber exactamente qué pasa y además, sugiere operaciones de mantenimiento que dependerán de los resultados obtenidos.


Véase también

Principales fabricantes de discos duros

Enlaces externos